

Intégrale des fonctions continues par morceaux III

Dans cette section E et F sont deux espaces vectoriels normés de dimension finie sur $\mathbb{I}K = \mathbb{R}$ ou \mathbb{C} , et [a,b] désigne un segment de \mathbb{R} , avec a < b.

III.1 Fonctions en escaliers

Définition (Subdivisions)

On appelle subdivision de [a, b] toute suite finie $(x_0 = a < x_1 < \ldots < x_{n-1} < x_n = b)$.

L'ensemble $\{a=x_0,\ldots,x_k,\ldots,x_n=b\}$ est appelé le support de la subdivision.

On note $S_{[a,b]}$ l'ensemble des subdivisions de [a,b].

Remarque

Soient σ et σ' deux subdivisions de [a, b].

On dit que σ est plus fine que σ' si le support de σ contient celui de σ' .

La subdivision notée $\sigma \cup \sigma'$ et dont le support est la réunion de ceux de σ et de σ' est plus fine que chacune des subdivisions σ et σ' .

Réciproquement si une subdivision de [a, b] est plus fine que σ et σ' , alors elle est plus fine que la subdivision $\sigma \cup \sigma'$.

Définition (Applications en escaliers)

Soit f une application de [a, b] dans E. On dit que f est en escaliers s'il existe :

- Une subdivision $\sigma = (x_k)_{0 \le k \le n}$ de [a, b],

- n vecteurs $u_0, u_1, ..., u_{n-1}$ de E, tels que : $\forall k = 0, ..., n-1, \forall t \in]x_k, x_{k+1}[, f(t) = u_k]$.

On dit alors que la subdivision σ est adaptée à f.

Remarques et notations

- Si σ est une subdivision adaptée à f, toute subvision plus fine que σ est adaptée à f.
- On note $\mathcal{E}([a,b],E)$ l'ensemble des fonctions en escaliers sur [a,b].
- Les fonctions constantes sur [a, b] sont des cas particuliers de fonctions en escaliers.
- Tout combinaison linéaire de fonctions en escaliers sur [a, b] est encore en escaliers.
- $\mathcal{E}([a,b],E)$ est donc un sous-espace vectoriel de $\mathcal{F}([a,b],E)$.
- Si E est une algèbre, notamment si $E = \mathbb{K}$, alors $\mathcal{E}([a,b],E)$ est une sous-algèbre de $\mathcal{F}([a,b],E)$: le produit de deux fonctions en escaliers sur [a,b] est encore en escaliers.

©EduKlub S.A. Page 1 Jean-Michel Ferrard www.klubprepa.net

III.2 Intégrale des fonctions en escaliers

Définition

Soient $f: I \to E$ une fonction en escaliers et $\sigma = (x_k)_{0 \le k \le n}$ une subdivision adaptée.

On suppose que : $\forall k \in \{0, \dots, n-1\}, \forall t \in]x_k, x_{k+1}[, f(t) = u_k.$

Le vecteur $\sum_{k=0}^{n-1} (x_{k+1} - x_k) u_k$ est appelé intégrale de f et est noté $\int_{[a,b]} f$.

Propriétés

- L'intégrale de f ne dépend pas de la subdivision adaptée á f choisie.
- Si f est constante égale à u sur [a,b], alors $\int_{[a,b]} f = (b-a)u$.
- Si l'application f est nulle sur [a,b], sauf peut-être en un nombre fini de points, alors elle est élément de $\mathcal{E}([a,b],E)$ et $\int_{[a,b]} f = 0$.
- L'application qui à f associe $\int_{[a,b]} f$ est linéaire de $\mathcal{E}([a,b],E)$ dans E.
- Si f appartient à $\mathcal{E}([a,b],E)$, alors l'application $||f||:t\mapsto ||f(t)||$ est également en escaliers. De plus on a l'inégalité : $\left\|\int_{[a,b]}f\right\|\leq \int_{[a,b]}||f||$.
- Si f appartient à $\mathcal{E}([a,b],E)$ et si c est un élément de]a,b[, alors les restrictions de f à [a,c] et [c,b] sont en escaliers et : $\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f$.
- Soit f un élément de $\mathcal{E}([a,b],E)$ et u une application linéaire de E dans F. Alors $u \circ f$ est en escaliers de [a,b] dans F et $\int_{[a,b]} u \circ f = u \left(\int_{[a,b]} f \right)$.

Cas des applications à valeurs réelles

- Si f appartient à $\mathcal{E}([a,b],\mathbb{R})$ et si $f \geq 0$ sur [a,b], alors $\int_{[a,b]} f \geq 0$.
- Si f, g appartiennent à $\mathcal{E}([a,b],\mathbb{R})$ et si $f \geq g$ sur [a,b], alors : $\int_{[a,b]} f \geq \int_{[a,b]} g$.

Remarque

Si f est en escaliers de [a, b] dans E, alors $\left\| \int_{[a,b]} f \right\| \le (b-a) \sup_{t \in [a,b]} \|f(t)\|$.

III.3 Définition de l'intégrale des fonctions continues par morceaux

Notation

On note $\mathcal{M}([a,b],E)$ l'espace vectoriel des applications continues par morceaux sur [a,b]. C'est un sous-espace vectoriel de l'espace $\mathcal{B}([a,b],E)$ des applications bornées sur E.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Proposition et définition (Intégrale sur $\mathcal{M}([a,b],E)$)

Soit f un élément de $\mathcal{M}([a, b], E)$.

On sait qu'il existe une suite (φ_n) de fonctions en escaliers qui convergent uniformément vers l'application f.

Alors la suite des intégrales $\int_{[a,b]} \varphi_n$ est convergente dans E.

On pose $\int_{[a,b]} f = \lim_{n\to\infty} \int_{[a,b]} \varphi_n$. Cette quantité est appelée intégrale de f sur [a,b]

Remarques

- La valeur de l'intégrale $\int_{[a,b]} f$ ne dépend pas de la suite (φ_n) de fonctions en escaliers utilisée pour approcher f.
- Elle ne dépend pas non plus de la norme choisie sur E (on rappelle que E est supposé être de dimension finie : toutes les normes sur E sont donc équivalentes.)
- Si l'application f est en escaliers sur [a,b] elle est continue par morceaux. L'intégrale de f est évidemment la même selon les deux points de vue.
- Si f est à valeurs réelles, la suite (φ_n) peut être choisie telle que pour tout $n, \varphi_n \leq f$ sur [a,b] (ou telle que pour tout $n, \varphi_n \geq f$ sur [a,b].)

Si f est à valeurs réelles positives, la suite (φ_n) peut être choisie telle que les φ_n soient elles aussi à valeurs positives sur [a,b].

Proposition (Invariance de l'intégrale par translation)

Soit f une application de I=[a,b] dans E, continue par morceaux.

Soit α un nombre réel.

On définit l'application g de $J = [a + \alpha, b + \alpha]$ dans E par $g(t) = f(t - \alpha)$.

Alors g est continue par morceaux sur J et $\int_{J} g = \int_{I} f$.

III.4 Propriétés de l'intégrale des fonctions continues par morceaux

Elles découlent de celles de $\mathcal{E}([a,b],E)$ par passage à la limite.

- Linéarité

L'application qui à f associe $\int_{[a,b]} f$ est linéaire de $\mathcal{M}([a,b],E)$ dans E.

Extension aux applications définies "presque partout"

Si f est continue par morceaux sur [a, b] et si g ne diffère de f qu'en un nombre fini de points, alors g est encore continue par morceaux sur [a, b], et $\int_{[a,b]} f = \int_{[a,b]} g$.

En particulier si f est définie sur [a, b] sauf peut-être en un nombre fini de points $x_0 = a < x_1 < \ldots < x_n = b$, et si la restriction de f à chaque $]x_k, x_{k+1}[$ est prolongeable par continuité

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

à $[x_k, x_{k+1}]$ alors on peut encore définir l'intégrale de f, en donnant éventuellement à f une valeur quelconque en chacun des x_k .

Composition par une application linéaire

Soit $f:[a,b]\to E$, continue par morceaux. Soit u une application linéaire de E dans F.

L'application
$$u \circ f$$
 appartient à $\mathcal{M}([a,b],F)$, et $\int_{[a,b]} u \circ f = u \left(\int_{[a,b]} f \right)$.

Intégrale et composantes dans une base

Soit f une application de [a, b] dans E muni d'une base $(e) = e_1, e_2, \ldots, e_n$.

On note
$$f_1, \ldots, f_n$$
 ses composantes : $\forall x \in [a, b], f(x) = \sum_{k=1}^n f_k(x) e_k$.

f est continue par morceaux \Leftrightarrow les composantes f_k sont continues par morceaux.

Dans ces conditions, on a l'égalité :
$$\int_{[a,b]} f = \sum_{k=1}^n \left(\int_{[a,b]} f_k \right) e_k.$$

En particulier, si
$$E=\mathbbm{C}$$
 et si $f=g+ih$: $\int_{[a,b]}f=\int_{[a,b]}g+i\int_{[a,b]}h.$

Autrement dit : Re
$$\int_{[a,b]} f = \int_{[a,b]} \text{Re } f$$
, et Im $\int_{[a,b]} f = \int_{[a,b]} \text{Im } f$

Intégrale de la norme

Si f appartient à $\mathcal{M}([a,b],E)$, alors l'application ||f||, à valeurs réelles et définie sur [a,b] par $t\mapsto ||f(t)||$, est également continue par morceaux.

De plus on a l'inégalité :
$$\left\| \int_{[a,b]} f \right\| \le \int_{[a,b]} \|f\|$$
.

III.5 Positivité et croissance de l'intégrale pour les fonctions réelles

On rappelle que le segment [a, b] est tel que a < b.

Proposition (Positivité et croissance de l'intégrale)

Soient f et g deux applications continues par morceaux sur [a, b], à valeurs réelles.

- Si
$$f \ge 0$$
 sur $[a, b]$, alors $\int_{[a, b]} f \ge 0$

– Si
$$f \ge g$$
 sur $[a, b]$, alors $\int_{[a, b]}^{c} f \ge \int_{[a, b]} g$.

- Si $f \ge 0$ sur [a, b], alors $\int_{[a,b]} f \ge 0$. Si $f \ge g$ sur [a, b], alors $\int_{[a,b]} f \ge \int_{[a,b]} g$. On suppose que f garde un signe constant sur [a, b] et que $\int_{[a,b]} f = 0$. \diamondsuit Si f est continue en un point x_0 de [a, b], alors $f(x_0) = 0$.

 - \diamond En particulier, si f est continue sur [a, b], alors f est identiquement nulle.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Remarques

- Le résultat précédent peut s'énoncer, en supposant $f \ge 0$ sur [a,b]: Si f est continue en un point x_0 de [a,b] et si f(x) > 0, alors $\int_{[a,b]} f > 0$. En particulier, si f est continue ≥ 0 mais non identiquement nulle sur [a,b], alors $\int_{[a,b]} f > 0$.
- Si f et g sont continues, si $f \leq g$ sur [a,b] et si $f \neq g$, alors $\int_{[a,b]} f < \int_{[a,b]} g$.

Proposition (Inégalité de la moyenne)

Soit f une application continue par morceaux de [a, b] dans E.

Alors
$$\left\| \int_{[a,b]} f \right\| \le (b-a) \sup_{t \in [a,b]} \|f(t)\|.$$

III.6 Extension de la définition et notation définitive

Notation

Soit f une application continue par morceaux de I dans E.

Pour tous points $a,\,b$ de I, on note :

Si
$$a < b$$
, $\int_a^b f = \int_{[a,b]} f$; Si $a > b$, $\int_a^b f = -\int_{[b,a]} f$; Si $a = b$, $\int_a^b f = 0$.

Remarques

- On dispose maintenant de la notation $\int_a^b f$, pour deux points quelconques a et b d'un intervalle I sur lequel f est continue par morceaux. On vérifie que $\forall (a,b) \in I^2$, $\int_a^b f = -\int_b^a f$.
- Les propriétés précédentes, relatives à la linéarité ou aux composantes, restent valables.
- En revanche, les propriétés relatives à la positivité et à la croissance dépendent de la position respective des bornes de l'intégrale.
- L'inégalité de la moyenne devient : $\forall (a,b) \in I^2, \left\| \int_{[a,b]} f \right\| \leq |b-a| \sup_{t \in [a,b]} \|f(t)\|.$
- Si f est continue par morceaux sur I, à valeurs dans E, et si a, b, c sont trois points quelconques de [a, b], alors : $\int_a^b f = \int_a^c f + \int_c^b f$ (Relation de Chasles.)

On peut généraliser à une suite finie c_1, \ldots, c_n de points de $I: \int_{c_1}^{c_n} f = \sum_{k=1}^{n-1} \int_{c_k}^{c_{k+1}} f$.

Notation

On note souvent $\int_a^b f(t)dt$ plutôt que $\int_a^b f$. Dans cette notation t est une variable muette.

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

DÉRIVATION ET INTÉGRATION

Partie III : Intégrale des fonctions continues par morceaux

III.7 Inégalité de Cauchy-Schwarz

Proposition

Soient f et g deux applications continues par morceaux de I dans \mathbb{K} .

Alors pour tous points
$$a$$
 et b de I : $\left| \int_a^b f \, \bar{g} \right|^2 \le \int_a^b |f|^2 \int_a^b |g|^2$.

En particulier, si
$$f$$
 g sont à valeurs réelles : $\left(\int_a^b f g\right)^2 \le \int_a^b f^2 \int_a^b g^2$.

Si f et g sont continues sur le segment [a,b], les inégalités précédentes sont des égalités $\Leftrightarrow f$ et g sont proportionnelles sur [a,b].

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.