Convergences de suites de fonctions intégrables TTT

III.1 Convergence en moyenne ou en moyenne quadratique

Proposition et définition

L'ensemble des fonctions continues et intégrables sur I est un espace vectoriel.

L'application $f \mapsto N(f) = \int_{\Gamma} |f|$ est une norme sur cet espace vectoriel.

On l'appelle la norme de la convergence en moyenne.

Définition

Soit f une application de I dans $\mathbb{I}K$, continue par morceaux.

On dit que f est de carré intégrable sur I si $|f|^2$ est une fonction intégrable sur I. On note $\mathcal{L}^2(I, \mathbb{K})$ l'ensemble des fonctions de carré intégrable sur I.

Propriétés

- Si f et g sont dans $\mathcal{L}^2(I, \mathbb{K})$, alors leur produit fg est dans $\mathcal{L}^1(I, \mathbb{K})$.
- L'ensemble $\mathcal{L}^2(I, \mathbb{K})$ est un sous-espace vectoriel de $\mathcal{C}_m(I, \mathbb{K})$.

Proposition et définition

L'ensemble des fonctions continues et de carré intégrable sur I est un espace vectoriel.

L'application $(f,g) \mapsto \langle f,g \rangle = \int_{\tau} \bar{f}g$ est un produit scalaire sur cet espace vectoriel.

La norme déduite de ce produit scalaire est définie par $N_2(f) = \left(\int |f|^2\right)^{1/2}$.

On l'appelle norme de la convergence en moyenne quadratique.

Proposition

Soient f et g deux applications continues et de carré intégrable sur I.

Alors on a les inégalités : $|\langle f, g \rangle| \le N_1(fg) \le N_2(f) N_2(g)$ (Cauchy-Schwarz).

Conséquence

Le produit scalaire est une application continue pour N_2 . Autrement dit :

Si $\lim_{n \to +\infty} f_n = f$ et $\lim_{n \to +\infty} g_n = g$ (au sens de la norme N_2), alors $\lim_{n \to +\infty} \langle f_n, g_n \rangle = \langle f, g \rangle$.

Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Intégration sur un intervalle quelconque

Partie III : Convergences de suites de fonctions intégrables

III.2 Théorèmes de convergence

Théorème (Théorème de convergence monotone)

Soit $(f_n)_{n\geq 0}$ une suite de fonctions intégrables de I dans \mathbb{R} .

On suppose que cette suite est croissante : $\forall n \in \mathbb{N}, \forall x \in I, f_n(x) \leq f_{n+1}(x)$.

On suppose en outre que $(f_n)_{n\geq 0}$ converge simplement sur I vers f continue par morceaux.

Alors l'application f est intégrable sur $I \Leftrightarrow$ la suite $\left(\int_I f_n\right)_{n \geq 0}$ est majorée.

Dans ces conditions, on a l'égalité : $\int_I f = \sup_{n \in \mathbb{N}} f_n = \lim_{n \to +\infty} \int_I f_n.$

Proposition (Interversion d'une série et d'une intégrale)

Soit $(f_n)_{n\geq 0}$ une suite de fonctions intégrables de I dans IK.

On suppose que $\sum f_n$ est simplement convergente sur I, de somme S continue par morceaux.

On suppose en outre que la série de terme général $\int_I |f_n|$ est convergente.

Alors S est intégrable sur I. De plus on $a: N_1(S) \leq \sum_{n=0}^{\infty} N_1(f_n)$ et $\int_I S = \sum_{n=0}^{\infty} \int_I f_n$.

Remarque

Ce résultat donne donc $\int_{I} \left(\sum_{n=0}^{\infty} f_n \right) = \sum_{n=0}^{\infty} \int_{I} f_n$ avec des hypothèses de convergence simple.

On n'omettra cependant pas de vérifier la convergence de la série $\sum_{n=0}^{+\infty} \int_{I} |f_n|$.

Théorème (Théorème de convergence dominée)

Soit $(f_n)_{n\geq 0}$ une suite de fonctions intégrables de I dans IK.

On suppose que cette suite est simplement convergente sur I vers une application f continue par morceaux.

On suppose qu'il existe $\varphi: I \to \mathbb{R}^+$, intégrable et telle que : $\forall n \in \mathbb{N}, \forall x \in I, |f_n(x)| \leq \varphi(x)$.

Alors l'application f est intégrable sur I et $\int_I f = \lim_{n \to +\infty} \int_I f_n$.

Remarque

Ce résultat donne donc $\int_I \lim_{n \to +\infty} f = \lim_{n \to +\infty} \int_I f_n$ avec des hypothèses de convergence simple.

Mais on n'oubliera pas l'hypothèse de domination : $\forall n \in \mathbb{N}, |f_n| \leq \varphi$ avec φ intégrable.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.