Nature d'une série

Nature d'une série

Enoncés

1) Déterminer la nature des séries dont le terme général est défini par :

a)
$$\forall n \in \mathbb{N}^*, u_n = 1 - \cos\left(\frac{1}{n}\right),$$

b)
$$\forall n \in \mathbb{N}^*, v_n = \frac{(-1)^n \cos n}{n \sqrt{n}}, v_n = \frac{(-1)^n \cos n}{n \sqrt{n}}$$

c)
$$\forall n \ge 2, z_n = \frac{1}{n} - ln \left(\frac{n}{n-1}\right).$$

- 2) Soient α et β deux réels avec $\alpha < 1$. Etudier la nature de la série de terme général $\frac{1}{n^{\alpha} \ln^{\beta} n}$.
- 3) Soient $(u_n)_{n_n}$ une suite réelle à termes positifs et p un entier naturel supérieur ou égal à 2. On suppose que la série de terme général u_n converge. Montrer que la série de terme général u_n converge.
- **4)** Soit $(u_n)_{n_n}$ une suite strictement positive telle que la suite $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ soit convergente et telle que :

$$\lim_{n\to +\infty} \frac{u_{n+1}}{u_n} < 1 \; .$$

- $\textbf{a)} \ \ \text{Montrer que } \exists \ q \in \]0,1[\ , \ \exists \ n_0 \in \mathbb{N}, \ \forall \ n \in [\![n_{\!{}_{\!{0}}}, +\!\!\!\! \infty[\![\ , 0 \leq \frac{u_{n+1}}{u_n} \leq q \, .$
- b) En déduire que la série de terme général u_n est convergente.

Séries

Nature d'une série

Corrections

1) a) On a: $\lim_{n\to +\infty}\frac{1}{n}=0$, donc d'après les équivalents de référence : $u_n\sim \frac{1}{2n^2}$. Comme la série de terme général $\frac{1}{2n^2}$ converge (série de Riemann, 2>1), on peut alors conclure, d'après les critères de comparaison des séries à termes positifs (en effet : $\forall n\in \mathbb{N}^*, \frac{1}{2n^2}\geq 0$) :

La série de terme général u_n converge

b) On a : $\forall n \in \mathbb{N}^*$, $\left| \frac{(-1)^n \cos n}{n \sqrt{n}} \right| \le \frac{1}{n \sqrt{n}}$.

Comme $\forall n \in \mathbb{N}^*$, $\begin{cases} \left| \frac{(-1)^n \cos n}{n \sqrt{n}} \right| \ge 0 \\ \frac{1}{n \sqrt{n}} \ge 0 \end{cases}$ et comme la série de terme général $\frac{1}{n \sqrt{n}} = \frac{1}{n^{\frac{3}{2}}}$ converge

(série de Riemann), les règles de comparaison des séries à termes positifs nous permettent alors d'écrire que la série de terme général $\left| \frac{(-1)^n \cos n}{n \sqrt{n}} \right|$ converge, donc que la série de terme

général $\frac{(-1)^n \cos n}{n\sqrt{n}}$ converge absolument, et donc que :

La série de terme général $\frac{(-1)^n \cos n}{n\sqrt{n}}$ converge

c) On a : $\forall n \in [2, +\infty[$, $z_n = \frac{1}{n} + ln\left(\frac{n-1}{n}\right)$ soit encore : $= \frac{1}{n} + ln\left(1 - \frac{1}{n}\right).$

Déterminons alors un équivalent de z quand n tend vers $+\infty$. Quand x est au voisinage de 0, on a :

$$\ln(1-x) = -x - \frac{x^2}{2} + o(x^2)$$
 donc

$$x + \ln(1-x) = -\frac{x^2}{2} + o(x^2)$$
 d'où

Page 2 Matthias FEGYVERES – Stéphane PRETESEILLE © EduKlub S.A.
Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

Séries

Nature d'une série

$$x + \ln(1 - x) \sim \frac{x^2}{2}$$

et donc, comme : $\lim_{n\to\infty} \frac{1}{n} = 0$

$$z_n \sim -\frac{1}{2n^2}$$

d'où:

$$-z_n \sim \frac{1}{2n^2}$$

Comme la série de terme général $\frac{1}{n^2}$ (n \geq 1) converge (série de Riemann, 2>1), on peut alors écrire la suite $\left(\frac{1}{2n^2}\right)_{n\in\mathbb{N}^*}$ étant positive et d'après les critères de comparaison des séries à termes positifs, que la série de terme général -z_n (n \geq 2) converge, et l'on peut donc conclure :

La série de terme général z_n (n≥2) converge.

2) Comme α <1, on a $\lim_{n\to\infty} n^{\alpha-1} ln^{\beta} n$ =0 (croissances comparées). Comme 0<1, on en déduit alors :

 $\exists\, n_0\in\mathbb{N},\ \forall\, n\geq n_0\,,\ n^{\alpha-1}\ln^\beta n<1,\ d\text{\'où en divisant par }n^\alpha\ln^\beta n>0\ (\text{pour }n\geq 2)\,:$

$$\exists \, n_0 \in [2, +\infty[\ , \forall \, n \ge n_0 \, , \, \frac{1}{n} < \frac{1}{n^{\alpha} \ln^{\beta} n} \, .$$

Comme $\forall n \in [2, +\infty[$, $\left\{ \frac{1}{n} \ge 0 \right\}$ et comme la série de terme général $\frac{1}{n}$ diverge, les règles de

comparaison des séries à termes positifs nous permettent alors de conclure :

La série de terme général $\frac{1}{n^{\alpha} \ln^{\beta} n}$ diverge

3) Comme la série de terme général u_n converge, on a : $\lim_{n\to +\infty} u_n = 0$. Par définition de la limite d'une suite, on peut donc écrire la suite $(u_n)_{n\in\mathbb{N}}$ étant à termes positifs :

 $\exists N \in \mathbb{N}, \forall n \ge N, 0 \le u_n \le 1$

donc la fonction $x \to x^{p-1}$ étant croissante sur \mathbb{R}^+ :

 $\exists N \in \mathbb{N}, \ \forall n \ge N, \ 0 \le u_n^{p-1} \le 1$

d'où en multipliant par $u_n \ge 0$:

 $\exists N \in \mathbb{N}, \forall n \ge N, 0 \le u_n^p \le u_n$

Page 3 Matthias FEGYVERES – Stéphane PRETESEILLE

© EduKlub S.A.

Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

Séries

Nature d'une série

Comme la série de terme général u_n converge, on peut donc conclure, d'après les critères de comparaison des séries à termes positifs :

La série de terme général u_n ^p converge

4) a) Soit ℓ la limite de la suite $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$. Comme $\ell\in[0,1[$, il existe $q\in]0,1[$ tel que : $0\$ $\ell<q<1$

(par exemple : $q = \frac{\ell + 1}{2}$). De plus, d'après la définition de la limite, on peut écrire :

 $\exists \, \mathbf{n}_0 \in \mathbb{N}, \ \forall \, \mathbf{n} \geq \mathbf{n}_0 \,, \ \frac{u_{\mathsf{n}+1}}{u_{\mathsf{n}}} < \mathsf{q} \,, \ \text{et donc la suite} \left(\frac{u_{\mathsf{n}+1}}{u_{\mathsf{n}}}\right)_{\!\mathsf{n} \in \mathbb{N}} \ \text{\'etant positive} :$

b) Comme $(u_n)_{n\in\mathbb{N}}$ est une suite strictement positive, on peut alors écrire :

 $\forall \ k \ge n_0 \ , \ 0 < u_{k+1} \le q u_k \quad \text{soit, en multipliant ces relations membre à membre pour } k = n_0 \ \text{à}$ $k = n-1 \ (n > n_0) \ \text{et en divisant la relation obtenue}$ $par \ u_{n_0+1} \ u_{n_0+2} \ \dots \ u_{n-1} > 0$

 $\forall n > n_0$, $0 < u_n \le q^{n-n_0} u_{n_0}$ i.e. :

$$\forall n > n_0, 0 < u_n \le q^n \frac{u_{n_0}}{q^{n_0}}.$$

Comme $q \in]0,1[$, on peut écrire que la série de terme général q^n converge, donc que la série de terme général $q^n \frac{u_{n_0}}{q^{n_0}}$ converge également. Les règles de comparaison des séries à termes positifs nous permettent alors de conclure :

La série de terme général u_n converge.