Option économique

MATHEMATIQUES II

Lundi 6 Mai 2002 de 8h à 12h

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document; l'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve un candidat repère ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre.

On désigne par N un nombre entier supérieur à 1 et par a un nombre réel strictement positif. L'objet du problème est d'étudier la rentabilité d'un investissement en fonction du taux d'intérêt ce qui conduit à l'étude dans les parties II et III des équations suivantes pour 0 < x < 1:

$$x^{N} + x^{N-1} + \dots + x^{2} + x - a = 0,$$

$$Nx^{N} + (N-1)x^{N-1} + \dots + 2x^{2} + x - a = 0$$

Dans la partie I, on étudie la première de ces équations dans deux cas particuliers (N = 2 et 3).

PARTIE I

1°) Résolution numérique de l'équation $x^2 + x - 1 = 0$ (0 < x < 1)

On considère dans cette question la fonction f définie pour $x \ge 0$ par :

$$f(x) = \frac{1}{x+1}.$$

a) Montrer que l'équation $x^2 + x - 1 = 0$ a une et une seule racine réelle appartenant à]0, 1[, et préciser la valeur de cette racine r_2 .

ESSEC BUSINESS SCHOOL AVENUE BERNARD HIRSCH - B.P. 105 93021 CERGY PONTOISE CEDEX FRANCE TEL.: 33 (OH 34 43 30 00 FAX: 33 (OH 34 43 31 II WEB: WWW.ESSEC.FR

ESSEC BUSINESS SCHOOL
ETABLISSEMENTS PRIVES D'ENSEIGNEMENT SUPERIEUI
ACCREDITES AACSB - THE INTERNATIONAL ASSOCIAT

- b) Montrer, si x désigne un nombre réel appartenant à [1/2, 1], que f(x) appartient à [1/2, 1].
- c) Calculer la dérivée f' de f et prouver l'inégalité suivante pour $1/2 \le x \le 1$:

$$|f'(x)| \le \frac{4}{9}.$$

d) On considère la suite définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$. Prouver l'inégalité suivante et la convergence de la suite (u_n) vers r_2 :

$$\forall n \in \mathbb{N}, \quad |u_n - r_2| \le \left(\frac{4}{9}\right)^n.$$

2°) Résolution numérique de l'équation $x^3 + x^2 + x - 1 = 0$ (0 < x < 1)

On considère dans cette question la fonction f définie pour $x \ge 0$ par :

$$f(x) = \frac{1}{x^2 + x + 1}.$$

- a) Montrer que l'équation $x^3 + x^2 + x 1 = 0$ a une seule racine réelle r_3 appartenant à]0, 1[.
- b) Montrer, si x désigne un nombre réel appartenant à [1/3, 1], que f(x) appartient à [1/3, 1].
- c) Calculer les dérivées f' et f'' de f, et en déduire le maximum de la valeur absolue de f'(x) pour x appartenant à [1/3, 1].
- d) On considère la suite définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$. Majorer $|u_n - r_3|$ en fonction de n et prouver la convergence de la suite (u_n) vers r_3 .

PARTIE II

3°) Etude de l'équation $x^{N} + x^{N-1} + ... + x - a = 0$

On note f_N la fonction polynôme définie par : $f_N(x) = x^N + x^{N-1} + ... + x^2 + x - a$.

- a) Montrer que l'équation $f_N(x) = 0$ possède une racine strictement positive x_N et une seule, puis montrer que celle-ci appartient à]0, 1[lorsque N > a.
- b) Montrer la relation (*): $(x-1)f_N(x) = x^{N+1} (a+1)x + a$.
- 4°) Racine positive de l'équation $x^N + x^{N-1} + ... + x a = 0$
- a) Montrer que $f_{N+1}(x_N) > f_N(x_N)$ et en déduire que la suite (x_N) est strictement décroissante. En déduire que la suite (x_N) converge vers un nombre réel x^* appartenant à [0, 1].
- b) Montrer que $0 < x_N \le x_A$, puis que $0 < (x_N)^N \le (x_A)^N$ lorsque $N \ge A$ où A est un entier naturel non nul. En choisissant $A \ge a$, en déduire la limite de la suite (x_N^N) lorsque N tend vers $+\infty$, puis, à l'aide de la relation (*), exprimer la limite x^* en fonction de a.

On convient alors de poser $x_N = \frac{a}{a+1}(1+\varepsilon_N)$, et ε_N tend donc vers 0 lorsque N tend vers $+\infty$.

c) Etablir à l'aide de la relation (*) l'égalité suivante :

$$(N+1)\varepsilon_N[\ln(\frac{a}{a+1}) + \ln(1+\varepsilon_N)] = \varepsilon_N \ln(\varepsilon_N) + \varepsilon_N \ln(a).$$

En déduire les limites de $(N+1)\varepsilon_N$ et de $(1+\varepsilon_N)^{N+1}$ lorsque N tend vers $+\infty$, puis déterminer à l'aide de la relation (*) un équivalent de ε_N en fonction de a et N.

On considère un investissement qui nécessite l'apport initial d'une somme $S_0 > 0$ l'année 0, puis qui rapporte ensuite la même somme S > 0 pendant chacune des N années suivantes, c'est à dire pendant les années interrigénéré pour Visiteur (), le 31/05/2021

Lorsque le taux d'intérêt des placements est supposé constant au cours du temps et égal à r > 0, on sait que le placement d'une somme s à l'issue de l'année 0 conduit à une somme $s_1 = (1+r)s$ à l'issue de l'année 1, ..., à une somme $s_n = (1+r)^n s$ à l'issue de l'année n, ...

Dans ce contexte, on obtiendra une somme S_n à l'issue de l'année n si et seulement si on obtient une somme $S_n / (1+r)^n$ à l'issue de l'année 0 (puisque le placement d'une telle somme $S_n / (1+r)^n$ conduit précisément à l'obtention de la somme S_n à l'issue de n années de placement). Aussi appellera-t-on dans ce contexte valeur présente de la somme S_n la somme $S_n/(1+r)^n$.

5°) Taux d'intérêt permettant la réalisation de l'investissement

a) Montrer que la valeur présente (à la fin de l'année 0) de l'investissement décrit ci-dessus est égale, compte tenu de la dépense initiale So et des revenus attendus, à :

$$VP(r) = \frac{S}{(1+r)^N} + \frac{S}{(1+r)^{N-1}} + \dots + \frac{S}{(1+r)^2} + \frac{S}{1+r} - S_0.$$

L'investissement précédent est alors réalisé si et seulement si l'inégalité $VP(r) \ge 0$ est vérifiée, c'est à dire s'il est financièrement plus intéressant de réaliser l'investissement projeté que de placer la somme S_0 au taux d'intérêt r des placements comme on l'a décrit plus haut.

- b) Montrer que l'équation VP(r) = 0 possède une racine strictement positive r_N et une seule si $N > S_0 / S$, et donner l'expression de celle-ci en fonction de x_N et montrer que l'investissement décrit est réalisé si et seulement si $r \leq r_N$.
- c) Préciser le sens de variation et la limite r^* de la suite (r_N) , puis exprimer cette limite r^* en fonction de S et S_0 et préciser un équivalent de l'erreur $r^* - r_N$ faite en remplaçant r_N par r^* .

PARTIE III

6°) Etude de l'équation $Nx^{N} + (N-1)x^{N-1} + ... + x - a = 0$

On note g_N la fonction polynôme définie par : $g_N(x) = Nx^N + (N-1)x^{N-1} + ... + 2x^2 + x - a$.

- a) Montrer que l'équation $g_N(x) = 0$ possède une racine strictement positive y_N et une seule, puis montrer que celle-ci appartient à]0, 1[lorsque N(N+1) > 2a.
- b) Montrer la relation (**): $(x-1)^2 g_N(x) = Nx^{N+2} (N+1)x^{N+1} + x a(x-1)^2$.

7°) Racine positive de l'équation $Nx^N + (N-1)x^{N-1} + ... + x - a = 0$

- a) Montrer que $g_{N+1}(y_N) > g_N(y_N)$ et en déduire que la suite (y_N) est strictement décroissante. En déduire que la suite (y_N) converge vers un nombre réel y^* appartenant à [0, 1[.
- b) Montrer que $0 < Ny_N^N \le Ny_A^N$ pour $N \ge A$ où A est un nombre entier tel que A(A+1) > 2a. En déduire la limite de la suite (Ny_N^N) lorsque N tend vers $+\infty$, et, à l'aide de la relation (**), exprimer la limite y^* en fonction de a.

On modifie les hypothèses précédentes et on suppose désormais que l'investissement considéré, qui nécessite toujours l'apport initial d'une somme So l'année 0, rapporte de plus en plus pendant chacune des N années suivantes, comme suit : une somme S l'année 1, une somme 2S l'année 2, une somme 3S l'année $3, \ldots$, une somme NS l'année N.

8°) Taux d'intérêt permettant la réalisation de l'investissement

a) Montrer que la valeur présente (à la fin de l'année 0) de l'investissement décrit est égale à :
$$VP(r) = \frac{NS}{(1+r)^N} + \frac{(N-1)S}{(1+r)^{N-1}} + \dots + \frac{2S}{(1+r)^2} + \frac{S}{1+r} - S_0.$$

L'investissement précédent est alors réalisé si et seulement si l'inégalité $VP(r) \ge 0$ est vérifiée.

Fichier généré pour Visiteur (), le 31/05/2021

b) Montrer que l'équation VP(r) = 0 possède une racine strictement positive r_N et une seule lorsque $N(N+1) > 2S_0 / S$, puis donner l'expression de celle-ci en fonction de y_N et montrer que l'investissement décrit est réalisé si et seulement si $r \le r_N$.

c) Préciser le sens de variation et la limite r^* de la suite (r_N) , puis exprimer cette limite r^* en fonction de S et S_0 . Fichier généré pour Visiteur (), le 31/05/2021