Concepteurs: H.E.C. - E.S.C.P. - E.A.P.

CODE EPREUVE:

OPTION: SCIENTIFIQUE

283

MATHEMATIQUES II

CCIP_M2_S

Mercredi 10 Mai 2006, de 14 h. à 18 h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite

Seule l'utilisation d'une règle graduée est autorisée.

Le problème a pour objet l'étude de quelques propriétés concernant le nombre de racines réelles d'un polynôme de degré n, $(n \ge 1)$, à coefficients réels fixés ou aléatoires.

Dans les parties II et III, les polynômes considérés sont à coefficients réels et on pourra confondre polynôme et fonction polynomiale associée.

Pour toute fonction Ψ dérivable sur son domaine de définition, la dérivée de Ψ est notée Ψ' .

Les quatre parties du problème sont, dans une large mesure, indépendantes.

Partie I. Nombre de racines réelles d'un polynôme du second degré à coefficients aléatoires

On considère dans cette partie, deux variables aléatoires réelles X_0 et X_1 définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes et de même loi.

Pour tout ω de Ω , on considère le polynôme Q_{ω} d'indéterminée y, défini par :

$$Q_{\omega}(y) = y^2 + X_1(\omega)y + X_0(\omega)$$

On désigne par $M(\omega)$ le nombre de racines réelles de Q_{ω} .

- 1. Montrer que l'application M qui, à tout ω de Ω associe $M(\omega)$, est une variable aléatoire définie sur (Ω, \mathcal{A}, P) .
- 2. Soit Z une variable aléatoire définie sur (Ω, \mathcal{A}, P) , qui suit une loi de Bernoulli de paramètre p $(p \in]0, 1[)$. On suppose dans cette question que X_0 et X_1 suivent la même loi que 2Z 1.
- a) Déterminer la loi de X_0 .
- b) Déterminer la loi de M et calculer son espérance E(M).

Dans les questions suivantes, on suppose que X_0 et X_1 suivent une même loi exponentielle de paramètre 1/2. On pose : $Y_0 = -4X_0$, $Y_1 = X_1^2$, $Y = Y_1 + Y_0$, et on note F_{Y_0} , F_{Y_1} et F_{Y_1} , les fonctions de répartition de Y_0 , Y_1 et Y, respectivement.

3. Montrer que l'on a, pour tout x réel :

$$F_{Y_1}(x) = \begin{cases} 1 - e^{-\sqrt{x}/2} & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases} \quad \text{et} \quad F_{Y_0}(x) = \begin{cases} 1 & \text{si } x \geqslant 0 \\ e^{x/8} & \text{si } x < 0 \end{cases}$$

En déduire l'expression d'une densité f_{Y_0} de Y_0 et d'une densité f_{Y_1} de Y_1 .

- 4. Soit g la fonction définie sur \mathbb{R}^{+*} par $g(t) = \frac{1}{\sqrt{t}} \times \exp\left[-\frac{1}{2}\left(\frac{t}{4} + \sqrt{t}\right)\right]$, où exp désigne la fonction exponentielle.
- a) Établir la convergence de l'intégrale impropre $\int_0^{+\infty} g(t)dt$.
- b) En déduire qu'une densité f_Y de la variable aléatoire Y est donnée, pour tout x réel, par :

$$f_Y(x) = \begin{cases} \frac{1}{32} e^{x/8} \int_0^{+\infty} g(t)dt & \text{si } x < 0\\ \frac{1}{32} e^{x/8} \int_x^{+\infty} g(t)dt & \text{si } x \geqslant 0 \end{cases}$$

- 5. On désigne par Φ la fonction de répartition d'une variable aléatoire qui suit la loi normale centrée, réduite.
- a) Justifier la validité du changement de variable $u=\sqrt{t}$ dans l'intégrale impropre $\int_0^{+\infty}g(t)dt$.
- b) En déduire que $\int_0^{+\infty} g(t)dt = 4\sqrt{e} \int_1^{+\infty} e^{-v^2/2} dv$, et donner, pour tout réel x négatif, l'expression de $f_Y(x)$ en fonction de Φ
- c) Montrer que, pour tout réel x positif, on a : $f_Y(x) = \frac{\sqrt{2\pi e}}{8} e^{x/8} \left[1 \Phi\left(\frac{\sqrt{x}}{2} + 1\right) \right]$.
- d) Déterminer la loi de M et son espérance E(M) (on fera intervenir le nombre $\Phi(1)$).

Partie II. Suites de Sturm

Soit n un entier supérieur ou égal à 1, et soit $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ un polynôme normalisé $(a_n = 1)$ donné, à coefficients réels. On suppose que toutes les racines réelles de P sont simples.

L'objectif de cette partie est de décrire un algorithme permettant de déterminer le nombre de racines réelles de P appartenant à un intervalle donné [a,b].

On associe au polynôme P, la suite $(R_i)_{i\geqslant 0}$ de polynômes définie de la manière suivante : $R_0=P, R_1=-P'$, et pour tout entier j tel que $R_{j+1}\neq 0$, le polynôme R_{j+2} est l'opposé du reste de la division euclidienne de R_j par R_{j+1} . Si $R_{j+1}=0$, on pose $R_{j+2}=0$.

1. Montrer qu'il existe un entier k $(k \ge 2)$, tel que $R_k = 0$. On note R_m , $(m \ge 1)$, le dernier polynôme non nul de la suite $(R_i)_{i \ge 0}$.

Dans toute cette partie, on pose:

$$\begin{cases} R_0 = S_1 R_1 - R_2 \\ R_1 = S_2 R_2 - R_3 \\ & \vdots \\ R_{m-2} = S_{m-1} R_{m-1} - R_m \\ R_{m-1} = S_m R_m \end{cases}$$

- 2. a) Montrer que s'il existe un entier j de [0, m-1] et un réel x_0 tels que $R_j(x_0) = R_{j+1}(x_0) = 0$, alors $P(x_0) = P'(x_0) = 0$.
- b) En déduire que le polynôme R_m n'admet pas de racine réelle.
- c) Soit j un entier de [1, m-1]. Montrer que si x_0 est une racine réelle de R_j , alors $R_{j-1}(x_0) \times R_{j+1}(x_0) < 0$.
- 3. Soit $s=(s_1,s_2,\ldots,s_t)$ une t-liste $(t\geqslant 2)$ de nombres réels non tous nuls. On ôte de s tous les éléments nuls en préservant l'ordre, et on obtient ainsi une p-liste $(p\leqslant t)$ $\widehat{s}=(\widehat{s_1},\widehat{s_2},\ldots,\widehat{s_p})$. On appelle nombre de changements de signe de s, le nombre d'éléments de l'ensemble \mathcal{E} défini par : $\mathcal{E}=\{i\in [1,p-1]\mid \widehat{s_i}\widehat{s_{i+1}}<0\}$. Si p=1, on dit que le nombre de changements de signe est nul.

Par exemple, si s = (0, 3, 0, 5, -3, 2), on a : $\hat{s} = (3, 5, -3, 2)$, et le nombre de changements de signe est égal à 2. Pour tout réel x, on note respectivement $C_1(x)$, $C_2(x)$ et C(x), le nombre de changements de signe du couple $(R_0(x), R_1(x))$, de la m-liste $(R_1(x), R_2(x), \ldots, R_m(x))$, et de la (m+1)-liste $(R_0(x), R_1(x), R_2(x), \ldots, R_m(x))$. On désigne par x_0 une racine réelle du polynôme P.

- a) En étudiant les variations de P au voisinage de x_0 , montrer qu'il existe un réel $\delta_1 > 0$ tel que, si $h \in]0, \delta_1[$, on a : $C_1(x_0 + h) - C_1(x_0 - h) = 1$.
- b) À l'aide de la question 2. c), montrer qu'il existe un réel $\delta_2 > 0$ tel que, si $h \in]0, \delta_2[$, on a :

 $C_2(x_0+h)=C_2(x_0-h)$ (on distinguera les deux éventualités : soit, x_0 n'est racine d'aucun des polynômes R_1, R_2, \ldots, R_m , soit, il existe un entier j de [1, m-1] tel que $R_j(x_0) = 0$).

- c) Déduire des deux questions précédentes que pour $\delta = \min(\delta_1, \delta_2)$ et $h \in]0, \delta[$, on a $C(x_0 + h) C(x_0 h) = 1$, et que si a et b sont deux réels qui ne sont pas racines de P et qui vérifient a < b, alors le nombre de racines réelles de P dans [a, b] est égal à C(b) - C(a).
- 4. a) Soit α une racine (réelle ou complexe) de P. Montrer que si $|\alpha| \geqslant 1$, alors $|\alpha|^n \leqslant |\alpha|^{n-1} \times \sum_{k=1}^{n-1} |a_k|$. En

déduire, pour toute racine α de P, l'inégalité : $|\alpha| \leqslant 1 + \sum_{i=1}^{n-1} |a_k|$.

- b) Écrire en français, un algorithme permettant de déterminer le nombre de racines réelles de P.
- 5. On définit en Pascal

const $n = \dots$;

Type tab = array[1..n] of real;

Var T : tab;

Écrire une fonction Pascal dont l'en-tête est Function nbchgs(T : tab) : integer qui donne le nombre de changements de signe dans la suite de réels (T[1], T[2],..., T[n]).

On tiendra compte du fait que le tableau T peut contenir des éléments nuls. La fonction nbchgs n'utilisera que le tableau T et aucun autre tableau auxiliaire. On expliquera en français la démarche utilisée.

Partie III. Un majorant du nombre de racines réelles de P

Soit V un polynôme de $\mathbb{R}[X]$ tel que $V(X) = v_m X^m + v_{m-1} X^{m-1} + \dots + v_1 X + v_0$, avec $v_m \neq 0$ et $m \in \mathbb{N}^*$. On note V^* le polynôme réciproque du polynôme V, défini par : $V^*(X) = v_0 X^m + v_1 X^{m-1} + \dots + v_{m-1} X + v_m$. Soit n un entier de \mathbb{N}^* . On considère l'application T qui, à tout polynôme P de degré n, normalisé, à coefficients réels, $P(X) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$, associe le polynôme T(P) défini par T(P)(X) = XP'(X).

On désigne par $N_0(P)$ le nombre de racines non nulles de P dans l'intervalle [-1,1] comptées avec leurs ordres de multiplicité, par $N_1(P)$ le nombre de racines de P dans $|-\infty,-1| \cup [1,+\infty[$ comptées avec leurs ordres de multiplicité, et par N(P) le nombre de racines réelles de P comptées avec leurs ordres de multiplicité.

- 1. a) Établir, à l'aide du théorème de Rolle, l'inégalité : $N_1(P) \leq N_1(T(P)) + 2$.
- b) Pour tout k de \mathbb{N}^* , on pose $T^k = T \circ T \circ \cdots \circ T$ (k fois). Montrer que $N_1(P) \leqslant N_1(T^k(P)) + 2k$.
- 2. a) Montrer que pour tout réel x non nul, on a $P^*(x) = x^n P\left(\frac{1}{x}\right)$.
- b) Montrer que $N_1(P) = N_0(P^*)$.

3. Pour tout réel
$$x$$
 et pour tout entier naturel k non nul, on pose :
$$Q_k(x) = 1 + a_{n-1} \left(1 - \frac{1}{n}\right)^k x + a_{n-2} \left(1 - \frac{2}{n}\right)^k x^2 + \dots + a_1 \left(1 - \frac{n-1}{n}\right)^k x^{n-1}.$$
 Montrer que $(T^k(P))^* = n^k Q_k$.

- 4. a) Établir, pour tout réel y de [0,1], l'inégalité : $(1-y)e^y \leq 1$.
- b) On admet la propriété suivante : soit r et ρ deux réels tels que $0 < r < \rho$. On note $D_{\rho} = \{z \in \mathbb{C} \ / \ |z| \le \rho\}$. Soit U un polynôme de $\mathbb{R}[X]$ tel que $U(0) \neq 0$. Soit μ un réel strictement positif tel que pour tout z de D_{ρ} , $|U(z)| \leq \mu$. Alors, le nombre de racines réelles de U comptées avec leurs ordres de multiplicité, dans l'intervalle

$$[-r,r]$$
, est majoré par le réel : $\frac{1}{\ln\left(\frac{\rho}{L}\right)} \times \ln\left(\frac{\mu}{|U(0)|}\right)$.

En appliquant cette propriété au polynôme Q_k avec r=1 et $\rho=e^{k/n}, \ (k\in\mathbb{N}^*),$ déduire des questions précédentes que pour tout k de \mathbb{N}^* , on a : $N_1(P) \leq 2k + \frac{n}{k} \ln(L(P))$, avec $L(P) = 1 + \sum_{i=0}^{n-1} |a_i|$.

- c) Soit ψ la fonction définie sur \mathbb{R}^{+*} par : $\psi(x) = 2x + \frac{\theta}{x}$, où θ est un paramètre réel positif.
 - i) Étudier les variations de ψ .
 - ii) Montrer que $\psi(\sqrt{\theta/2} + 1) \le 2 + 2\sqrt{2\theta}$.
 - iii) En déduire l'inégalité : $N_1(P) \leq 2 + 2\sqrt{2n\ln(L(P))}$.
- d) En supposant $a_0 \neq 0$, on démontrerait de même (et on admettra dans la suite du problème) que :

$$N_0(P) \leqslant 2 + 2\sqrt{2n\ln\left(\frac{L(P)}{|a_0|}\right)}$$

Conclure en donnant un majorant de N(P), fonction des coefficients $a_0, a_1, \ldots, a_{n-1}$.

Partie IV. Nombre de racines réelles d'un polynôme de degré n à coefficients aléatoires

Pour n entier supérieur ou égal à 2, on considère dans cette partie, les variables aléatoires réelles $X_1, X_2, \ldots, X_{n-1}$ définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes et de même loi de Poisson de paramètre λ , strictement positif.

Pour tout ω de Ω , on considère le polynôme Q_{ω} d'indéterminée y, défini par :

$$Q_{\omega}(y) = y^{n} + X_{n-1}(\omega)y^{n-1} + \dots + X_{1}(\omega)y + 1$$

Soit $M_n(\omega)$ le nombre de racines réelles de Q_ω . On admet que l'application $M_n: \omega \mapsto M_n(\omega)$ est une variable aléatoire définie sur (Ω, \mathcal{A}, P) .

- 1. On définit la variable aléatoire L_n par : $L_n = 2 + \sum_{i=1}^{n-1} X_i$. Soit $Z_n = L_n 2$. Rappeler la loi de Z_n .
- 2. À l'aide des résultats de la partie III, montrer que pour tout ω de Ω , on a :

$$M_n(\omega) \leqslant 4 + 4\sqrt{2n} \times \sqrt{\ln(Z_n(\omega) + 2)}$$

- 3. Soit h une fonction de classe C^2 , concave sur \mathbb{R}^+ . Soit W une variable aléatoire définie sur (Ω, \mathcal{A}, P) , à valeurs dans \mathbb{N} . On suppose l'existence des espérances E(W) et E(h(W)).
- a) Montrer que, pour tout couple (x_0, x) de réels positifs, on a : $h(x) \leq h'(x_0)(x x_0) + h(x_0)$.
- b) En prenant $x_0 = E(W)$, établir l'inégalité suivante : $E(h(W)) \leq h(E(W))$.
- 4. a) Montrer que la fonction φ définie sur \mathbb{R}^+ par $\varphi(x) = \sqrt{\ln(x+2)}$ est concave sur \mathbb{R}^+ .
- b) Soit a un réel positif. Montrer que la série de terme général $\sqrt{\ln(k+2)} \times \frac{a^k}{k!}$ est convergente.
- 5. a) Prouver l'existence de l'espérance $E(M_n)$.
- b) Montrer que, pour tout réel β strictement supérieur à 1/2, on a :

$$\lim_{n \to +\infty} \frac{E(M_n)}{n^{\beta}} = 0$$

* FIN *