SUJETS COURTS DE MATHEMATIQUES

VARIABLES DISCRETES 1. HEC ESCP

ENONCE DE L'EXERCICE

ENONCE-1

On désigne par [x] la partie entière du réel x.

$$\text{Montrer que } \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{n^k}{2^{k-1}k!} \underset{(n \to +\infty)}{\sim} \exp(\frac{n}{2}).$$

Indications - var discrètes 1.

On pourra penser au théorème de la limite centrée et faire intervenir une loi classique.

Eléments de correction : var discrètes 1.

Soit (Ω, \mathcal{T}, P) un espace probabilisé et considérons $(X_n)_{n\geq 1}$ une suite de variables aléatoires définies sur Ω telle que $\forall n\geq 1$, la variable X_n suit la loi de Poisson de paramètre $\frac{n}{2}$.

La variable X_n peut être considérée comme la somme de n variables de Poisson, indépendantes, de même paramètre $\frac{1}{2}$. On peut donc appliquer à X_n le théorème de

la limite centrée. La variable centrée réduite associée à X_n est $X_n^* = \frac{X_n - \frac{n}{2}}{\sqrt{\frac{n}{2}}}$; cette variable centrée néduite associée à X_n est $X_n^* = \frac{X_n - \frac{n}{2}}{\sqrt{\frac{n}{2}}}$;

variable converge en loi vers une variable X^* qui suit la loi normale centrée réduite $\mathcal{N}(0,1)$.

 $\lim_{n\to +\infty}P(X_n^*\leq 0)=P(X^*\leq 0)=\Phi(0) \text{ (où Φ est la fonction de répartition de la loi normale centrée réduite), donc }\lim_{n\to +\infty}P(X_n^*\leq 0)=\frac{1}{2}\cdot \text{ Or }$

$$(X_n^* \le 0) = \left(\frac{X_n - \frac{n}{2}}{\sqrt{\frac{n}{2}}} \le 0\right)$$
$$= (X_n - \frac{n}{2} \le 0)$$
$$= (X_n \le \frac{n}{2})$$
$$= (X_n \le \left[\frac{n}{2}\right])$$

car X_n prend des valeurs entières et la plus grande valeur entière inférieure ou égale à $\frac{n}{2}$ prise par X_n est par définition $[\frac{n}{2}]$.

On peut aussi écrire $(X_n \leq [\frac{n}{2}]) = \bigcup_{k=0}^{[\frac{n}{2}]} (X_n = k)$, union d'événements deux à deux incompatibles, donc

$$P(X_n \le \left[\frac{n}{2}\right]) = \sum_{k=0}^{\left[\frac{n}{2}\right]} P(X_n = k)$$

$$= \sum_{k=0}^{\left[\frac{n}{2}\right]} \exp(-\frac{n}{2}) \frac{\left(\frac{n}{2}\right)^k}{k!}$$

$$= \exp(-\frac{n}{2}) \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{\left(\frac{n}{2}\right)^k}{k!}$$

$$\lim_{n \to +\infty} P(X_n^* \le 0) = \frac{1}{2} \Longleftrightarrow \lim_{n \to +\infty} \exp(-\frac{n}{2}) \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{\left(\frac{n}{2}\right)^k}{k!} = \frac{1}{2}.$$

Puisque cette limite n'est pas nulle, on a $\exp(-\frac{n}{2})\sum_{k=0}^{\left[\frac{n}{2}\right]}\frac{\left(\frac{n}{2}\right)^k}{k!} \underset{(+\infty)}{\sim} \frac{1}{2}$, ou encore

$$\sum_{k=0}^{[\frac{n}{2}]} \frac{\left(\frac{n}{2}\right)^k}{k!} \underset{(+\infty)}{\sim} \frac{\exp(\frac{n}{2})}{2}$$

page 3 Jean MALLET (C) EDUKLU
Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation
des oeuvres autre que la consultation individuelle et privée sont interdites.

Or
$$\frac{\left(\frac{n}{2}\right)^k}{k!} = \frac{1}{2^k} \frac{n^k}{k!}$$
, donc $\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{\left(\frac{n}{2}\right)^k}{k!} = \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{2^k} \frac{n^k}{k!}$. Il vient donc

 $\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{2^k} \frac{n^k}{k!} \underset{(+\infty)}{\sim} \frac{\exp(\frac{n}{2})}{2}, \text{ et après avoir simplifier des deux cotés par } \frac{1}{2}, \text{ on obtient le résultat demandé}:$

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{2^{k-1}} \frac{n^k}{k!} \underset{(+\infty)}{\sim} \exp(\frac{n}{2})$$