SUJETS COURTS DE MATHEMATIQUES

MATRICES 1. HEC.ESCP

ENONCE DE L'EXERCICE

ENONCE-1

Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que A ou B soit inversible. Déterminer les réels μ pour lesquels la matrice $C = A + \mu B$ est inversible.

Indications - matrices.1

Etablir que le produit de deux matrices de $\mathcal{M}_n(\mathbb{R})$ est inversible si et seulement si les deux le sont.

Eléments de correction: matrices.1

• Lemme : montrons que si C et D sont deux matrices inversibles de $\mathcal{M}_n(\mathbb{R})$, alors CD inversible équivaut à C et D inversibles.

Sens réciproque : c'est du cours : le produit de matrices inversibles de $\mathcal{M}_n(\mathbb{R})$ est inversible.

Sens direct : plaçons nous dans \mathbb{R}^n muni de sa base canonique et associons à C et D deux endomorphismes f et g respectivement.

Supposons que D ne soit pas inversible. Cela veut dire que g n'est pas bijectif, donc pas injectif. Il existe un vecteur $x \neq 0$ dans \mathbb{R}^n tel que g(x) = 0. On a alors $(f \circ g)(x) = f(g(x)) = 0$, ce qui permet de conclure que $f \circ g$ n'est pas bijectif, donc CD n'est pas inversible et cela est contraire à l'hypothèse.

Donc CD inversible implique D inversible. On peut écrire $C = (CD)D^{-1}$, donc C est inversible comme produit de deux matrices inversibles.

On a montré CD inversible implique C et D inversibles, d'où l'équivalence.

Remarque: au passage, par une récurrence facile, on peut montrer que le produit de k matrices de $\mathcal{M}_n(\mathbb{R})$ est inversible si et seulement si les k matrices le sont.

- Si A est inversible.
 - * $\mu = 0$, alors C = A donc C est inversible.
 - * $\mu \neq 0$, alors $C = \mu A(\left(\frac{1}{\mu}I + A^{-1}B\right)$.

Comme μA est inversible on peut affirmer : C inversible si et seulement si $\frac{1}{\mu}I + A^{-1}B$ est inversible donc si et seulement si $-\frac{1}{\mu} \notin \operatorname{spect}(A^{-1}B)$.

• Si B est inversible.

Alors $C = B(B^{-1}A + \mu I)$

Donc C inversible si et seulement si $B^{-1}A + \mu I$ est inversible donc si et seulement si $-\mu \notin \operatorname{spect}(B^{-1}A)$.

page 3 Jean MALLET © EDUKLUB SA