SUJETS COURTS DE MATHEMATIQUES

MATRICES 2. HEC.ESCP

ENONCE DE L'EXERCICE

ENONCE-2

1) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle qu'il existe un entier k naturel non nul tel que $A^k = (0)$ où (0) est la matrice nulle de $\mathcal{M}_n(\mathbb{R})$.

Montrer que la matrice $B = I_n + A + \dots + A^{k-1}$ est inversible et déterminer son inverse.

2) Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_5[X]$ tel que $P + P' + \cdots + P^{(5)} = X^5$.

Eléments de correction : matrices.2

- On a : $(I-A)(I+A+\cdots+A^{k-1})=I-A^k=I$ puisque $A^k=(0)$, c'est-à-dire (I-A)B=I. Donc B est inversible et $B^{-1}=I-A$.
- Soit D l'endomorphisme de dérivation de $E = \mathbb{R}_5[X]$: $\forall Q \in \mathbb{R}_5[X]$, D(Q) = Q'. Comme deg $(Q) \leq 5$, on en déduit que $D^6 = 0$.

Donc l'endomorphisme $\mathrm{Id}_E+D+\cdots+D^5$ est inversible et son inverse est Id_E-D . L'égalité $P+P'+\cdots+P^{(5)}=X^5$ équivaut à $(\mathrm{Id}_E+D+\cdots+D^5)P=X^5$ qui équivaut à $(\mathrm{Id}-D)X^5=P$.

L'équation $P + P' + \cdots + P^{(5)} = X^5$ a une unique solution $P = X^5 - 5X^4$.

page 2 \qquad **Jean MALLET** \qquad \bigcirc EDUKLUB SA