SUJETS COURTS DE MATHEMATIQUES

VARIABLES A DENSITE 8. HEC ESCP

ENONCE DE L'EXERCICE

ENONCE-8

Soit (Ω, \mathcal{T}, P) un espace probabilisé.

On considère une suite de variables $(X_k)_{k>0}$ mutuellement indépendantes, définies sur Ω , de même loi exponentielle de paramètre 1. Soit N une variable aléatoire, définie sur Ω , suivant la loi géométrique sur \mathbb{N}^* , de paramètre $p \in]0,1[$, et indépendante des variables X_k pour tout k.

On définit, pour tout $\omega \in \Omega$, la variable U par :

$$\forall \omega \in \Omega, \ U(\omega) = \min_{1 \le k \le N(\omega)} (X_k(\omega)).$$

Déterminer la loi de U (fonction de répartition et densité).

Indications - var à densité 8.

Calculer $P_{N=n}(U>x)$ pour x>0, puis P(U>x); déterminer P(U>x) quand $x\leq 0$ et en déduire la fonction de répartition de U.

On trouve
$$\forall x \in \mathbb{R}$$
, $F_U(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ \frac{1 - e^{-x}}{1 - qe^{-x}} & \text{si } x > 0 \end{cases}$

page 2 Jean MALLET © EDUKLUB SA

var à densité 8.

Par indépendance des variables X_k , on a :

$$\forall n \ge 1, \ P_{N=n}(U > x) = \prod_{k=1}^{n} P(X_k > x)$$

$$= \prod_{k=1}^{n} \left(\int_{x}^{+\infty} e^{-t} dt \right)$$

$$= \prod_{k=1}^{n} \left(\lim_{y \to +\infty} \int_{x}^{y} e^{-t} dt \right)$$

$$= \prod_{k=1}^{n} \left(\lim_{y \to +\infty} (-e^{-y} + e^{-x}) \right)$$

$$= \prod_{k=1}^{n} e^{-x} = e^{-nx}$$

si $x \le 0$, $(U > x) = \Omega$ puisque $U(\Omega) = \mathbb{R}_+$, donc P(U > x) = 1.

Utilisons le système complet d'événements $(N=n)_{n\geq 1}$: d'après la formule des probabilités totales,

$$si x > 0, P(U > x) = \sum_{n=1}^{+\infty} P(N = n) P_{N=n}(U > x)
= \sum_{n=1}^{+\infty} pq^{n-1} P_{N=n}(U > x)
P(U > x) = \sum_{n=1}^{+\infty} pq^{n-1} e^{-nx}
= pe^{-x} \sum_{n=1}^{+\infty} (qe^{-x})^{n-1}
= pe^{-x} \sum_{j=0}^{+\infty} (qe^{-x})^{j}
= pe^{-x} \frac{1}{1 - qe^{-x}} = \frac{pe^{-x}}{1 - qe^{-x}}$$

En effet, il s'agit de sommer une série géométrique convergente puisque sa raison $qe^{-x} \in]0,1[$.

 $\forall x \in \mathbb{R}, \ F_U(x) = 1 - P(U > x),$ d'où le résultat :

$$\forall x \in \mathbb{R}, \ F_U(x) = \begin{cases} 0 & \text{si } x \le 0\\ 1 - \frac{pe^{-x}}{1 - qe^{-x}} = \frac{1 - e^{-x}}{1 - qe^{-x}} & \text{si } x > 0 \end{cases}$$

Pour une densité f_U de U, on dérive F_U sur \mathbb{R}_* et on prend $f_U(0) = 0$, ce qui donne

$$\forall x \in \mathbb{R}, \ f_U(x) = \begin{cases} 0 & \text{si } x \le 0\\ \frac{pe^{-x}}{(1 - qe^{-x})^2} & \text{si } x > 0 \end{cases}$$

page 3 Jean MALLET © EDUKLUB SA