SUJETS COURTS DE MATHEMATIQUES

VAR A DENSITE.13. HEC.ESCP

ENONCE DE L'EXERCICE

ENONCE-13

Soit X une variable aléatoire à densité, de fonction de répartition F. Déterminer la fonction de répartition de X^n pour $n \in \mathbb{N}^*$.

Appliquer à X suivant une loi uniforme sur [-1,1].

Eléments de correction: 13.

Notons F_n la fonction de répartition de X^n et F celle de X.

$$\forall x \in \mathbb{R}, \ F_n(x) = P(X^n \le x).$$

• Cas où n est pair. Alors $X^n(\Omega) \subset \mathbb{R}_+$.

$$\forall x \le 0, \ F_n(x) = 0.$$

$$\forall x > 0, \ (X^n \le x) = (-x^{\frac{1}{n}} \le X \le x^{\frac{1}{n}})$$

$$F_n(x) = F(x^{\frac{1}{n}}) - F(-x^{\frac{1}{n}})$$

$$F_n(x) = \begin{cases} 0 & \text{si } x \le 0 \\ F(x^{\frac{1}{n}}) - F(-x^{\frac{1}{n}}) & \text{si } x > 0 \end{cases}$$

• Cas où n est impair. Alors $X^n(\Omega) \subset \mathbb{R}$.

 $\forall x \in \mathbb{R}, \ (X^n \leq x) = (X \leq x^{\frac{1}{n}}) \text{ car la fonction } t \longmapsto t^{\frac{1}{n}} \text{ est la réciproque de } t \longmapsto t^n \text{ ; elle est donc strictement croissante sur } \mathbb{R}.$

$$\forall x \in \mathbb{R}, \ F_n(x) = F(x^{\frac{1}{n}})$$

• Application au cas où X suit la loi uniforme sur [-1,1].

$$F(x) = \begin{cases} 0 & \text{si } x \le -1\\ \frac{x+1}{2} & \text{si } -1 \le x \le 1\\ 1 & \text{si } x \ge 1 \end{cases}$$

Etudions succinctement les fonctions $f_n : t \longmapsto t^n$ et $g_n : t \longmapsto t^{\frac{1}{n}}$

 \triangleleft cas où n est pair et $t \ge 0$.

t	0		1		$+\infty$
f_n	0	7	1	7	$+\infty$

$$X^n(\Omega) = [0;1]$$

Soit
$$x \ge 0$$
; $F_n(x) = F(x^{\frac{1}{n}}) - F(-x^{\frac{1}{n}}) = F(g_n(x)) - F(-g_n(x)).$

Si
$$x \ge 1$$
, alors $g_n(x) \ge 1$ et donc $-g_n(x) \le -1$: donc $F_n(x) = 1 - 0 = 1$.

Si $0 \le x \le 1$, alors $g_n(x) \in [0;1]$ et $-g_n(x) \in [-1;0]$ d'après l'étude faite précédemment ; donc $F_n(x) = \frac{x^{\frac{1}{n}} + 1}{2} - \frac{-x^{-\frac{1}{n}} + 1}{2} = x^{\frac{1}{n}}$.

$$F_n(x) = \begin{cases} 0 & \text{si } x \le 0 \\ x^{\frac{1}{n}} & \text{si } 0 \le x \le 1 \\ 1 & \text{si } x \ge 1 \end{cases}$$

page 2 Jean MALLET © EDUKLUB SA

 \triangleleft cas où n est impair et $t \in \mathbb{R}$.

t		-1	0	1	
f_n	7	-1 /	7 0	/ 1	7

t		-1	0	1	
g_n	7	-1 /	0 /	1	7

$$X^{n}(\Omega) = [-1; 1]$$
 et $F_{n}(x) = F(g_{n}(x))$.

Si
$$x \le -1$$
, alors $g_n(x) \le -1$, donc $F_n(x) = 0$.

Si $-1 \le x \le 1$, alors $-1 \le g_n(x) \le 1$ d'après le tableau de variations de g_n , donc $F_n(x) = \frac{x^{\frac{1}{n}} + 1}{2}$.

Si $x \ge 1$, alors $g_n(x) \ge 1$ et $F_n(x) = 1$.

$$F_n(x) = \begin{cases} 0 & \text{si } x \le -1\\ \frac{x^{\frac{1}{n}} + 1}{2} & \text{si } -1 \le x \le 1\\ 1 & \text{si } x \ge 1 \end{cases}$$