SUJETS COURTS DE MATHEMATIQUES

INTERALES GENERALISEES 2. HEC ESCP

ENONCE DE L'EXERCICE

ENONCE-2

f,g,h sont 3 applicatons continues sur $\mathbb{R}_+.$ On suppose que :

$$\forall x \in \mathbb{R}_+, \ f(x) \leq g(x) \leq h(x) \ \text{et les intégrales} \ \int_0^{+\infty} \!\! f(x) dx \ \text{et} \ \int_0^{+\infty} \!\! h(x) dx \ \text{sont convergentes}.$$

Que peut-on dire de l'intégrale $\int_0^{+\infty}\!\!g(x)dx$?

Intégrales généralisées.2

Réponse : elle converge.

Eléments de correction : intégrales généralisées.2

Par hypothèse on peut écrire : $\forall x \ge 0, \ 0 \le g(x) - f(x) \le h(x) - f(x)$.

$$\int_0^{+\infty} f(x)dx$$
 et $\int_0^{+\infty} h(x)dx$ convergent par hypothèse, donc $\int_0^{+\infty} (h(x) - f(x))dx$ converge aussi.

Les fonctions g-f et h-f sont continues sur \mathbb{R}_+ , positives ; d'après le théorème de comparaison des fonctions continues positives, on conclut que $\int_0^{+\infty} (g(x)-f(x))dx$ converge.

Or g = (g - f) + f. D'après les opérations sur les intégrales convergentes,

$$\left(\int_0^{+\infty} (g(x) - f(x))dx \text{ et } \int_0^{+\infty} f(x)dx \text{ convergent}\right) \text{ entraine } \int_0^{+\infty} g(x)dx \text{ converge.}$$