Ensembles normaux pour une application

Soient E et F deux ensembles finis de même cardinal.

Soit f une application de $\mathcal{P}(E)$ dans $\mathcal{P}(F)$ vérifiant les deux conditions suivantes :

$$f(\emptyset) = \emptyset$$
 et $\forall (A, B) \in \mathcal{P}(E)^2$, $f(A \cup B) = f(A) \cup f(B)$

- 1. Montrer l'implication : $\forall (A, B) \in \mathcal{P}(E)^2, A \subset B \Rightarrow f(A) \subset f(B)$. [S]
- 2. En déduire : $\forall (A, B) \in \mathcal{P}(E)^2$, $f(A \cap B) \subset f(A) \cap f(B)$. [S] On suppose, dans la suite du problème, que f satisfait à la troisième condition :

$$\forall A \in \mathcal{P}(E), \operatorname{Card}(f(A)) \geq \operatorname{Card}(A)$$

- 3. On dit que A est normal (sous-entendu pour f) si Card(f(A)) = Card(A).
 - (a) Montrer que \emptyset et E sont normaux. [S]
 - (b) Montrer que si A et B sont normaux, $A \cup B$ et $A \cap B$ sont normaux. [S]
 - (c) Montrer que si A et B sont normaux, $f(A \cap B) = f(A) \cap f(B)$. [S]
- 4. Parmi tous les sous-ensembles normaux non vides de E, soit A_0 de cardinal minimum.
 - (a) Soit A un sous-ensemble normal de E. Montrer que $A \supset A_0$ ou $A \cap A_0 = \emptyset$. [S]
 - (b) Soient α un élément de A_0 et β un élément de $f(\{\alpha\})$.

On pose
$$E' = E - \{\alpha\}$$
 et $F' = F - \{\beta\}$.

On définit une application g de $\mathcal{P}(E')$ dans $\mathcal{P}(F')$ par :

$$\forall C \in \mathcal{P}(E'), \ g(C) = f(C) \cap F'$$

Montrer que g vérifie les trois conditions analogues à celles de f.

Indication : pour la troisième condition, on pourra considérer une partie A de E' et discuter suivant que A est ou n'est pas normal pour f. [S]

(c) En déduire qu'il existe une bijection $\varphi: E \to F$ telle que : $\forall x \in E, \varphi(x) \in f(\{x\})$. Indication : procéder par récurrence sur l'entier $n = \operatorname{Card} E = \operatorname{Card} F$. [S]

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.