FILTRES ET ULTRAFILTRES

Filtres et ultrafiltres

Soit E un ensemble non vide.

On dit qu'un sous-ensemble \mathcal{F} de $\mathcal{P}(E)$ est un filtre sur E si

- $-(P_0) \quad \mathcal{F} \neq \emptyset.$
- $-(P_1) \quad \forall (X,Y) \in \mathcal{F}^2, \ X \cap Y \in \mathcal{F}.$
- $-(P_2) \quad \forall X \in \mathcal{F}, \ \forall Y \in \mathcal{P}(E): \quad X \subset Y \Rightarrow Y \in \mathcal{F}.$
- $-(P_3) \quad \emptyset \notin \mathcal{F}.$

Première Partie

- 1. Que dire d'une famille \mathcal{F} de $\mathcal{P}(E)$ qui vérifierait (P_2) mais pas (P_3) ? [S]
- 2. L'ensemble $\mathcal{P}(E)$ est-il un filtre sur E?

 A quelle condition sur E, l'ensemble $\mathcal{P}(E) \setminus \{\emptyset\}$ est-il un filtre sur E? [S]
- 3. Montrer que si \mathcal{F} est un filtre sur E alors E appartient à \mathcal{F} . [S]
- 4. Pour toute partie non vide A de E, on note $\mathcal{F}_A = \{X \subset E, A \subset X\}$. Montrer que \mathcal{F}_A est un filtre sur E. On l'appelle le filtre principal engendré par A. [S]
- 5. On désigne par $\mathcal{F}(E)$ l'ensemble des filtres sur E. Montrer que l'application φ de $\mathcal{P}(E)\setminus\{\emptyset\}$ dans $\mathcal{F}(E)$ définie par $\varphi(A)=\mathcal{F}_A$ est injective. [S]
- 6. Dans cette question, on suppose que E est un ensemble infini. On note \mathcal{I}_E l'ensemble des complémentaires des parties finies de E. Montrer que \mathcal{I}_E est un filtre sur E. [S]

Deuxième Partie

- Soit \$\mathcal{F}\$ un filtre sur \$E\$. On suppose que l'un des éléments de \$\mathcal{F}\$ est une partie finie de \$E\$. L'objectif de cette question est de démontrer que le filtre \$\mathcal{F}\$ est principal.
 Par hypothèse l'ensemble \$\mathcal{N}\$ = {n ∈ IN, ∃ B ∈ \$\mathcal{F}\$, card(B) = n} est donc non vide.
 Soit \$n_0\$ le minimum de l'ensemble \$\mathcal{N}\$, et soit \$A\$ un élément de \$\mathcal{F}\$ de cardinal \$n_0\$.
 Montrer que \$\mathcal{F}\$ est le filtre principal engendré par \$A\$. [S]
- 2. (a) En déduire que si E est un ensemble fini, tout filtre sur E est principal. [S]
 - (b) Qu'en déduit-on, si E est fini, pour l'application φ définie en I-5 ? [S]
 - (c) Quel est le nombre de filtres sur un ensemble à n éléments (avec $n \ge 1$)? Donner quelques exemples de filtres sur l'ensemble $E = \{a, b, c, d\}$. [S]
- 3. Soit E un ensemble infini. Prouver que \mathcal{I}_E n'est pas un filtre principal. [S]

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

FILTRES ET ULTRAFILTRES

Troisième Partie

Soit \mathcal{F} un filtre sur E. On définit une relation \mathcal{R} sur $\mathcal{P}(E)$ en posant :

$$\forall (X,Y) \in \mathcal{P}(E)^2, \quad X\mathcal{R}Y \Leftrightarrow \exists B \in \mathcal{F}, \ X \cap B = Y \cap B$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence sur $\mathcal{P}(E)$. [S]
- 2. Soit A une partie non vide de E. On suppose que $\mathcal{F} = \mathcal{F}_A$. Montrer qu'alors : $\forall (X,Y) \in \mathcal{P}(E)^2, \ X\mathcal{R}Y \Leftrightarrow X \cap A = Y \cap A$. [S]
- 3. On suppose que E est infini et que \mathcal{F} est le filtre \mathcal{I}_E . Δ désigne l'opération différence symétrique sur $\mathcal{P}(E)$. Montrer que : $\forall (X,Y) \in \mathcal{P}(E)^2, \ X\mathcal{R}Y \Leftrightarrow X\Delta Y$ est un ensemble fini. [S]

Quatrième Partie

On munit l'ensemble $\mathcal{F}(E)$ de la relation d'ordre "inclusion".

Autrement dit, si \mathcal{F} et \mathcal{G} sont deux filtres sur E, on pose $\mathcal{F} \leq \mathcal{G} \Leftrightarrow \mathcal{F} \subset \mathcal{G}$.

NB : on pourra indifféremment utiliser le symbole \leq ou le symbole \subset .

On dit qu'un filtre \mathcal{F} de E est un ultrafiltre si : $\forall \mathcal{G} \in \mathcal{F}(E), \ \mathcal{F} \subset \mathcal{G} \Rightarrow \mathcal{F} = \mathcal{G}$.

- 1. Vérifier que pour toutes parties A, B non vides de $E : A \subset B \Leftrightarrow \mathcal{F}_B \subset \mathcal{F}_A$. [S]
- 2. (a) L'ensemble $\mathcal{F}(E)$ possède-t-il un élément minimum? Si oui lequel? [S]
 - (b) L'ensemble $\mathcal{F}(E)$ possède-t-il un élément maximum? Si oui lequel? [S]
- 3. (a) Soit \mathcal{F}_A le filtre engendré par une partie A non vide de E.

 Montrer que \mathcal{F}_A est un ultrafiltre si et seulement si A est un singleton $\{x\}$.

 On dit que les $\mathcal{F}_{\{x\}}$ sont les ultrafiltres triviaux. [S]
 - (b) Quels sont les ultrafiltres sur E si l'ensemble E est fini? [S]
- 4. On rappelle que pour toute partie A de E, \overline{A} est le complémentaire de A dans E. Montrer qu'un filtre \mathcal{F} sur E est un ultrafiltre si et seulement si :

$$\forall A \in \mathcal{P}(E), (A \in \mathcal{F} \text{ ou } \overline{A} \in \mathcal{F})$$

[S]

5. Soit $\mathcal F$ un filtre sur E. Montrer que $\mathcal F$ est un ultrafiltre si et seulement si :

$$\forall (A, B) \in \mathcal{P}(E)^2, \quad A \cup B \in \mathcal{F} \Rightarrow (A \in \mathcal{F} \text{ ou } B \in \mathcal{F})$$

[S]

- 6. (a) Montrer que $\mathcal{I}_{\mathbb{N}}$ n'est pas un ultrafiltre. [S]
 - (b) Montrer que $\mathcal{I}_{\mathbb{N}}$ n'est inclus dans aucun ultrafiltre trivial. [S]

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

FILTRES ET ULTRAFILTRES

Corrigé du problème

Première Partie

- 1. Soit \mathcal{F} un sous-ensemble de $\mathcal{P}(E)$ vérifiant (P_1) mais pas (P_2) . Puisque l'ensemble vide appartient à \mathcal{F} , et puisque toute partie X de E contient \emptyset , de l'hypothèse (P_2) il découle que X est élément de \mathcal{F} , donc $\mathcal{F} = \mathcal{P}(E)$. [Q]
- 2. \(\mathcal{P}(E) \) n'est pas un filtre sur \(E \) car il ne vérifie pas l'hyptohèse \((P_3) \).
 Si \(E \) est réduit \(\text{a} \) un singleton \(\{x\}, \) alors \(\mathcal{P}(E) \) \(\{ \emptyset \} \) est un filtre sur \(E \).
 Mais si \(E \) contient au moins deux éléments distincts \(x \) et \(y \), alors les singletons \(X = \{x\} \) et \(Y = \{y\} \) sont éléments de \(\mathcal{P}(E) \) \(\{\emptyset \} \), mais pas leur intersection (qui est vide).
 Ainsi \(\mathcal{P}(E) \) \(\{\emptyset \} \) est un filtre sur \(E \) si et seulement si \(E \) est un singleton. \[\left[Q \] \]
- 3. Soit \mathcal{F} un filtre sur E. Puisque $\mathcal{F} \neq \emptyset$, soit A un élément de \mathcal{F} . L'inclusion $A \subset E$ et l'hypothèse (P_2) impliquent que E est élément de \mathcal{F} . [Q]
- 4. Tout d'abord \mathcal{F}_A est non vide car l'ensemble A est lui-même un élément de \mathcal{F}_A . Ensuite, soient X et Y deux éléments de \mathcal{F}_A , c'est-à-dire deux parties de E contenant A. On a bien sûr $A \subset X \cap Y$, ce qui prouve que $X \cap Y$ appartient à \mathcal{F}_A . Ensuite, si $X \in \mathcal{F}_A$ et si $Y \subset E$ contient X, on a $A \subset X \subset Y$ donc $Y \in \mathcal{F}_A$. Enfin, A étant non vide, l'ensemble vide n'est pas élément de \mathcal{F}_A ($A \not\subset \emptyset$). On a établi les propriétés (P_0) , (P_1) , (P_2) , (P_3) : \mathcal{F}_A est un filtre sur E. [Q]
- 5. On se donne deux parties non vides A et B de E telles que $\mathcal{F}_A = \mathcal{F}_B$. Il s'agit donc de prouver l'égalité A = B. On sait que A est toujours élément de \mathcal{F}_A . On en déduit ici $A \in \mathcal{F}_B$, c'est-à-dire $B \subset A$. Les deux ensembles A et B jouant le même rôle, il en découle $B \subset A$ puis A = B. [Q]
- 6. Tout d'abord E est élément de \mathcal{I}_E , car il est le complémentaire de l'ensemble vide, qui est une partie finie de E. Donc \mathcal{I}_E est non vide : la propriété (P_0) est vérifiée.
 - Soient X et Y deux éléments de \mathcal{I}_E : cela signifie que les complémentaires \overline{X} et \overline{Y} de X et Y sont des parties finies de E.

 Il en est donc de même de l'ensemble $\overline{X} \cup \overline{Y}$, qui est le complémentaire de $X \cap Y$.

 Ainsi $X \cap Y$ est élément de \mathcal{I}_E , ce qui établit la propriété (P_1) .
 - Soit X un élément de \mathcal{I}_E et soit Y une partie de E contenant X. Le complémentaire \overline{Y} est donc contenu dans celui de X, qui par hypothèse est fini. Il en découle que \overline{Y} est fini, donc que Y est dans \mathcal{I}_E : cela établit (P_2) .
 - Enfin l'ensemble vide n'est pas élément de \mathcal{I}_E car son complémentaire E est infini. Cela établit (P_3) et achève de prouver que \mathcal{I}_E est un filtre sur E.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.