

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Soit f une application continue de [a, b] dans lui-même.

Montrer qu'il existe un point x_0 de [a, b] tel que $f(x_0) = x_0$.

Exercice 2 [Indication] [Correction]

Soit $f:[a,b]\to\mathbb{R}$, continue et injective. Montrer que f est strictement monotone.

Exercice 3 [Indication] [Correction]

Soit $f:[0,1]\to\mathbb{R}$, continue et telle que f(0)=f(1).

- 1. Montrer que pour tout entier n > 0, il existe un réel α_n de [0,1] tel que $f(\alpha_n + \frac{1}{n}) = f(\alpha_n)$.
- 2. Montrer que ce résultat est faux si on remplace $\frac{1}{n}$ par $\lambda \in]0,1[$, avec $\frac{1}{\lambda} \notin \mathbb{N}$.

EXERCICE 4 [Indication] [Correction]

Soient $f, g: [0,1] \to \mathbb{R}$, continues, telles que f(0) = g(1) = 0 et f(1) = g(0) = 1.

Montrer que pour tout $\lambda \geq 0$, il existe x_0 dans [0,1] tel que $f(x) = \lambda g(x)$.

EXERCICE 5 [Indication] [Correction]

Soient $f, g : [a, b] \to \mathbb{R}$, continues et telles que $: \forall x \in [a, b], \ 0 < g(x) < f(x)$.

Montrer qu'il existe un réel $\lambda > 1$ tel que, pour tout x de $[a,b]: f(x) \geq \lambda g(x)$.

Exercice 6 [Indication] [Correction]

Soit f une application croissante sur [a, b].

Montrer que l'ensemble de ses points de discontinuité est au plus dénombrable.

Exercice 7 [Indication] [Correction]

Donner un exemple d'une application $f:[0,1]\to [0,1]$, strictement croissante et ayant une infinité dénombrable de points de discontinuité.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.