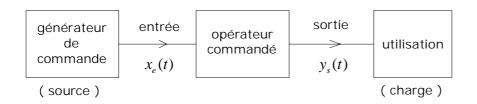
SYSTEMES BOUCLES

COURS

CH.37: COMMANDE D'UN SYSTEME

<u>Plan</u> (Cliquer sur le titre pour accéder au paragraphe)



I. OPE	RATEUR ELECTRONIQUE COMMANDE	
I.1.	MODELISATION	
I.1.1.	Schéma fonctionnel unifilaire	1
I.1.2.	Schéma fonctionnel bifilaire	2
I.2.	IMPEDANCES CARACTERISTIQUES	2
I.2.1.	Impédance d'entrée de l'opérateur	2
I.2.2.	Impédance de sortie	
I.3.	OPERATEUR UNIDIRECTIONNEL	2
I.3.1.	Définition	2
I.3.2.	Modèle d'un opérateur unidirectionnel	3
	RATEUR UNIDIRECTIONNEL IDEAL	
II.1.	PROPRIETES	
II.2.	EXEMPLE DE L' AMPLIFICATEUR DE TENSION IDEAL	
II.3.	ASSOCIATION EN CASCADE DE DEUX OPERATEURS IDEAUX	4
	YSTEMES BOUCLES	4
III.1.	SCHEMA FONCTIONNEL UNIFILAIRE	
III.2.	RETROACTION ET REACTION POSITIVE	
III.3.	PREMIERES CONSEQUENCES DU BOUCLAGE AVEC RETROACTION	
III.4.	SENSIBILITE D' UN SYSTEME BOUCLE	
III.4.1.		
III.4.2.		
III.5.	STABILITE DES SYSTEMES BOUCLES	
III.5.1.	Notion de stabilité	5
III.5.2.		
III.6.	OSCILLATEURS QUASI-SINUSOÏDAUX	6
III.7.	EXEMPLE D' UNE « RETROACTION TENSION-TENSION »	6
III.7.1.	Schéma fonctionnel bifilaire	6
III.7.2.	Hypothèses simplificatrices pour l'étude des systèmes bouclés	7
III.7.3.		
	•	

I. OPERATEUR ELECTRONIQUE COMMANDE

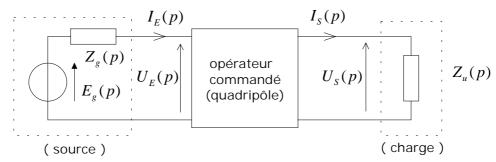
I.1. MODELISATION

I.1.1. Schéma fonctionnel unifilaire

On introduit la fonction de transfert:

$$H(p) = \frac{Y_{S}(p)}{X_{E}(p)}$$

Page 1 Christian MAIRE © EduKlub S.A.


Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

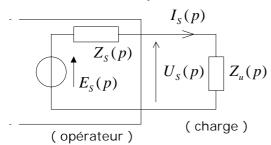
SYSTEMES BOUCLES

COURS

I.1.2. Schéma fonctionnel bifilaire

- Une source **linéaire** pourra toujours être modélisée par un générateur de Thévenin (cf. figure ci-dessus) ou un générateur de Norton.
- ullet On utilisera la notation de Laplace (par exemple $Z_{g}(p)$) ou, plus souvent, la notation complexe pour un régime sinusoïdal ($\underline{Z}_{g}(j\omega)$).
- L'opérateur commandé sera mis sous forme de quadripôle.
- La plupart du temps, l'utilisation se comportera comme un dipôle linéaire **passif**, d'impédance $Z_u(p)$ ou $\underline{Z}_u(j\omega)$.

I.2. IMPEDANCES CARACTERISTIQUES


I.2.1. <u>Impédance d'entrée de l'opérateur</u>

Elle est définie par :

$$Z_E(p) = \frac{U_E(p)}{I_E(p)}$$

Rq: en essayant d'obtenir $|\underline{Z}_E| \gg |\underline{Z}_g|$, on aura $\underline{U}_E \simeq \underline{E}_g$ (donc directement contrôlable).

1.2.2. <u>Impédance de sortie</u>

Du point de vue de la charge, la source et l'opérateur commandé **linéaires** pourront être modélisés par un modèle de Thévenin ; avec les conventions choisies :

$$Z_{S}(p) = -\left(\frac{U_{S}(p)}{I_{S}(p)}\right)_{E_{S}=0}$$

Rq1: en général, $E_{\rm S}$ sera proportionnel à $E_{\rm g}$ \Rightarrow la condition $E_{\rm S}$ = 0 se traduit par $E_{\rm g}$ = 0.

Rq2: en essayant d'obtenir (en RSF) $\left|\underline{Z}_{u}\right| \gg \left|\underline{Z}_{S}\right|$, on aura $\underline{U}_{S} \simeq \underline{E}_{S}$ (directement contrôlable).

1.3. OPERATEUR UNIDIRECTIONNEL

I.3.1. <u>Définition</u>

- Un système commandé est unidirectionnel si la sortie ne réagit pas sur l'entrée.
- Si l'on permutait la source de commande et l'utilisation (ou si l'on retournait le quadripôle représentant l'opérateur), les nouvelles grandeurs de sortie (initialement les grandeurs d'entrée) seraient nulles.

Rq: pour les dipôles unidirectionnels, on a une propriété analogue (exemple d'une diode).

Page 2 Christian MAIRE © EduKlub S.A.

Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.