

Méthodes

- 1. Opérations sur les matrices
- Somme de deux matrices. Soient n et p deux entiers naturels non nuls, $(A,B) \in (\mathcal{M}_{n,p}(\mathbb{K}))^2$, $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ et $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$. La somme des matrices A et B est la matrice $C \in \mathcal{M}_{n,p}(\mathbb{K})$,

C=A+B définie par :
$$C = (C_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
 où :

$$\forall (i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket, c_{i,j} = a_{i,j} + b_{i,j}.$$

• Produit d'une matrice par un scalaire. Soient n et p deux entiers naturels non nuls, $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ et $\lambda \in \mathbb{K}$. Le produit de la matrice A par le scalaire λ est la

matrice
$$C \in \mathcal{M}_{n,p}(\mathbb{K})$$
, $C = \lambda A$ définie par : $C = (C_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ où :

$$\forall (i,j) \in [1,n] \times [1,p], c_{i,j} = \lambda a_{i,j}.$$

■ Produit de deux matrices. Soient n, m et p trois entiers naturels non nuls, $\mathbf{A} \in \mathcal{M}_{\mathsf{n},\mathsf{p}}(\mathbb{K})$, $\mathbf{A} = (a_{\mathsf{i},\mathsf{j}})_{\substack{1 \leq \mathsf{i} \leq \mathsf{p} \\ 1 \leq \mathsf{j} \leq \mathsf{p}}}$ et $\mathbf{B} \in \mathcal{M}_{\mathsf{p},\mathsf{m}}(\mathbb{K})$, $B = (b_{\mathsf{i},\mathsf{j}})_{\substack{\mathsf{i} \leq \mathsf{i} \leq \mathsf{p} \\ \mathsf{i} \leq \mathsf{j} \leq \mathsf{m}}}$. Le produit des matrices \mathbf{A} et \mathbf{B} est la

matrice C
$$\in \mathcal{M}_{n,m}(\mathbb{K})$$
, C=AB définie par : $C = (c_{i,j})_{\substack{1 \leq i \leq n \\ 1 < i < m}}$ où :

$$\forall (\mathsf{i},\mathsf{j}) \in \ \llbracket 1,n \rrbracket \times \llbracket 1,m \rrbracket \ , \ \ c_{i,j} = \sum_{k=\mathsf{l}}^p a_{i,k} b_{k,j} \ .$$

■ Transposée d'une matrice. Soient n et p deux entiers naturels non nuls, $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$. La transposée de la matrice A est la matrice $C \in \mathcal{M}_{p,n}(\mathbb{K})$, $C = {}^t A$

définie par :
$$C = (c_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le n}}$$
 où :

$$\forall (i,j) \in [1,p] \times [1,n], c_{i,j} = a_{j,i}.$$

Soient n et p deux entiers naturels non nuls, $(A,B) \in (\mathcal{M}_{n,p}(\mathbb{K}))^2$ et $\lambda \in \mathbb{K}$. On a ${}^t(A+B) = {}^tA + {}^tB$, ${}^t(\lambda A) = \lambda^t A$. De plus, on a pour tout entier naturel n non nul et pour tout $(A,B) \in (\mathcal{M}_n(\mathbb{K}))^2$: ${}^t(AB) = {}^tB^tA$. Enfin, si A est inversible, tA est inversible, d'inverse ${}^t(A^{-1})$.

- Matrice symétrique. Soit $A \in \mathcal{M}_n(\mathbb{K})$. A est symétrique si et seulement si : $^tA = A$.
- 2. Inversibilité d'une matrice et détermination de son inverse éventuelle.

Ensemble $GL_n(\mathbb{K})$

- Soient n un entier naturel non nul et $A \in \mathcal{M}_n(\mathbb{K})$. A est inversible si $\exists B \in \mathcal{M}_n(\mathbb{K})$, $AB = I_n$ ou $BA = I_n$ (et si l'une de ces égalités est vérifiée, alors $AB = BA = I_n$). Lorsque A est inversible, B est appelée inverse de A et on note $B = A^{-1}$.
- Soit n un entier naturel non nul. L'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ est noté $GL_n(\mathbb{K})$. Attention... il ne s'agit pas d'un espace vectoriel.

Page 1 Matthias FEGYVERES – Stéphane PRETESEILLE © EduKlub S.A.
Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.