

Deux études de familles de fonctions

Problème 1

Pour tout réel λ , on note f_{λ} l'application définie par $f_{\lambda}(x) = \frac{4x}{\lambda + \ln \left| \frac{x}{x-4} \right|}$.

- 1. (a) Déterminer le domaine de définition \mathcal{D}_{λ} de f_{λ} . Placer soigneusement, les uns par rapport aux autres, les réels de $\mathbb{R} \setminus \mathcal{D}_{\lambda}$. [S]
 - (b) Montrer qu'on peut prolonger f_{λ} par continuité aux points 0 et 4. Dans la suite, on supposera que f_{λ} est ainsi prolongée. [S]
- 2. (a) Étudier la dérivabilité de f_{λ} en 0 et en 4 (on donnera l'allure de \mathcal{C}_{λ} .) [S]
 - (b) Étudier les asymptotes verticales de la courbe \mathcal{C}_{λ} . [S]
 - (c) Étudier l'application f_{λ} au voisinage de $\pm \infty$. On vérifiera notamment que \mathcal{C}_{λ} est asymptote à une parabole quand $\lambda = 0$, et à une droite quand $\lambda \neq 0$. On précisera l'équation de l'asymptote et le placement de la courbe par rapport à celle-ci. [S]
- 3. (a) Etudier les variations de l'application g_{λ} définie par $4g_{\lambda}(x) = \left(\lambda + \ln\left|\frac{x}{x-4}\right|\right)^2 f_{\lambda}'(x)$. [S]
 - (b) En discutant suivant λ , déterminer le signe de f'_{λ} par intervalles. En déduire les tableaux de variation de f_{λ} dans les cas suivants : $\lambda > 2, \ \lambda = 2, \ 0 < \lambda < 2, \ \lambda = 0, \ \lambda < 0.$ [S]
 - (c) Construire les courbes pour $\lambda=3,\,\lambda=2,\,\lambda=1,\,\lambda=0,\,\lambda=-2.$ [S]

Problème 2

Pour tout réel λ , on définit l'application f_{λ} par $f_{\lambda}(x) = (x - \lambda)^x$. On note \mathcal{C}_{λ} la courbe représentative de f_{λ} .

- 1. Préciser le domaine de définition \mathcal{D}_{λ} de f_{λ} , ainsi que la limite $\ell_{\lambda} = \lim_{x \to \lambda^{+}} f_{\lambda}(x)$ dans $\overline{\mathbb{R}}$. [S]
- 2. Quand ℓ_{λ} est finie, étudier l'allure de \mathcal{C}_{λ} au voisinage de $(\lambda, \ell_{\lambda})$. [S]
- 3. On note u_{λ} l'application définie sur \mathcal{D}_{λ} par $f'_{\lambda}(x) = u_{\lambda}(x)f_{\lambda}(x)$.
 - (a) Si $\lambda < 0$, montrer que u_{λ} ne s'annule qu'une seule fois. En déduire le tableau des variations de f_{λ} dans ce cas. [S]
 - (b) Etudier les variations de f_{λ} quand $\lambda = 0$. [S]
- 4. (a) Etudier les variations de u_{λ} quand $\lambda > 0$. En déduire que :
 - Si $\lambda > e^{-2}$, alors $u_{\lambda}(x) > 0$ pour tout $x de \mathcal{D}_{\lambda}$.
 - Si $\lambda = e^{-2}$, alors $u_{\lambda}(x) \geq 0$ sur \mathcal{D}_{λ} et ne s'annule qu'en un seul point.
 - Si $0 < \lambda <$ e⁻², alors $u_{\lambda}(x)$ s'annule en μ_1, μ_2 , avec $\lambda < \mu_1 < 2\lambda < \mu_2$. [S]
 - (b) En déduire les différents tableaux de variations possibles pour f_{λ} quand $\lambda > 0$. [S]
- 5. Étudier le placement respectif des courbes $y = f_{\lambda_1}(x)$ et $y = f_{\lambda_2}(x)$, avec $\lambda_1 < \lambda_2$. [S]
- 6. Construire sur un même graphique les représentations graphiques des applications f_{λ} pour chacun des cas rencontrés dans ce problème. [S]

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé du problème

Problème 1

1. (a) L'ensemble \mathcal{D}_{λ} est $\mathbb{R} \setminus \{0,4\}$ privé des solutions de l'équation (E): $\ln \left| \frac{x}{x-4} \right| + \lambda = 0$.

Or
$$(E) \Leftrightarrow \left| \frac{x-4}{x} \right| = e^{\lambda} \Leftrightarrow 1 - \frac{4}{x} = \varepsilon e^{\lambda} \Leftrightarrow x = \frac{4}{1-\varepsilon e^{\lambda}}, \text{ avec } \varepsilon \in \{-1,1\}.$$

On en déduit :
$$\mathcal{D}_{\lambda} = \mathbb{R} \setminus \{0, 4, a_{\lambda}, b_{\lambda}\}$$
, en notant $a_{\lambda} = \frac{4}{1 - e^{\lambda}}$ et $b_{\lambda} = \frac{4}{1 + e^{\lambda}}$.

On doit maintenant placer a_{λ} et b_{λ} par rapport à 0 et 4.

- Si $\lambda = 0$, alors a_{λ} n'est pas défini et $b_{\lambda} = 2$. Dans ce cas $\mathcal{D}_{\lambda} = \mathbb{R} \setminus \{0, 2, 4\}$.
- Si $\lambda \neq 0$, alors $0, 4, a_{\lambda}, b_{\lambda}$ sont deux à deux distincts.

Si
$$\lambda < 0$$
, on a $0 < b_{\lambda} < 4 < a_{\lambda}$; si $\lambda > 0$, et $a_{\lambda} < 0 < b_{\lambda} < 4$. [Q]

(b) On a $\lim_{x\to 0} \left(\lambda + \ln \left| \frac{x}{x-4} \right| \right) = -\infty$, donc $\lim_{x\to 0^-} f_{\lambda}(x) = 0^+$ et $\lim_{x\to 0^+} f_{\lambda}(x) = 0^-$.

De même,
$$\lim_{x\to 4} \left(\lambda + \ln \left| \frac{x}{x-4} \right| \right) = +\infty$$
, donc $\lim_{x\to 4} f_{\lambda}(x) = 0^+$.

On peut ainsi prolonger f_{λ} par continuité en posant $f_{\lambda}(0) = f_{\lambda}(4) = 0$. [Q]

$$\text{2.} \quad \text{(a)} \ \ \text{On a} \ \frac{f_{\lambda}(x)}{x} = \frac{4}{\lambda + \ln|x| - \ln|x - 4|} \ \stackrel{\sim}{\circ} \ \frac{4}{\ln|x|} \ \text{donc} \ \lim_{x \to 0} \frac{f_{\lambda}(x)}{x} = 0^{-}.$$

On en déduit que f_{λ} est dérivable en 0, avec $f'_{\lambda}(0) = 0$.

La courbe $y = f_{\lambda}(x)$ présente donc une tangente horizontale à l'origine.

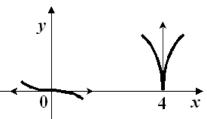
En fait c'est une tangente d'inflexion car $\lim_{x\to 0^-} f_\lambda(x) = 0^+$ et $\lim_{x\to 0^+} f_\lambda(x) = 0^-$.

On a
$$\frac{f_{\lambda}(x)}{x-4} = \frac{4x}{(\lambda + \ln|x| - \ln|x-4|)(x-4)} \approx \frac{16}{(4-x)\ln|x-4|}$$

On en déduit
$$\lim_{x \to 4^-} \frac{f_{\lambda}(x)}{x-4} = -\infty$$
 et $\lim_{x \to 4^+} \frac{f_{\lambda}(x)}{x-4} = +\infty$.

On en déduit que f_{λ} n'est pas dérivable en x=4.

Plus précisément, la courbe $y=f_{\lambda}(x)$ présente au point (4,0) une demi-tangente verticale dirigée vers le haut. Voici l'allure de la courbe au voisinage des points d'abscisses 0 et 4.



[Q]

(b) Il n'y a d'asymptote verticale que lorsque x tend vers a_{λ} ou vers b_{λ} .

Notons
$$d_{\lambda}(x) = \lambda + \ln \left| \frac{x}{x-4} \right|$$
. On a $d'_{\lambda}(x) = \frac{1}{x} - \frac{1}{x-4} = \frac{4}{x(4-x)}$.

 d_{λ} est donc décroissante sur $]-\infty,0[$ et sur $]4,+\infty[$, et croissante sur]0,4[.

Or d_{λ} s'annule en a_{λ} et en b_{λ} . On en déduit les résultats suivants :

– Si
$$\lambda < 0$$
, on a $0 < b_{\lambda} < 4 < a_{\lambda}$.

Ainsi
$$\lim_{x \to b_{\lambda}^{-}} d_{\lambda}(x) = 0^{-}$$
, $\lim_{x \to b_{\lambda}^{+}} d_{\lambda}(x) = 0^{+}$, $\lim_{x \to a_{\lambda}^{-}} d_{\lambda}(x) = 0^{+}$, $\lim_{x \to a_{\lambda}^{+}} d_{\lambda}(x) = 0^{-}$.

Ainsi
$$\lim_{x \to b_{\lambda}^{-}} f_{\lambda}(x) = -\infty$$
, $\lim_{x \to b_{\lambda}^{+}} f_{\lambda}(x) = +\infty$, $\lim_{x \to a_{\lambda}^{-}} f_{\lambda} = +\infty$, $\lim_{x \to a_{\lambda}^{+}} f_{\lambda}(x) = -\infty$.

Page 2 Jean-Michel Ferrard www.klubprepa.net

©EduKlub S.A.

– Si $\lambda > 0$, on a $a_{\lambda} < 0 < b_{\lambda} < 4$ (attention au signe de $a_{\lambda}...$)

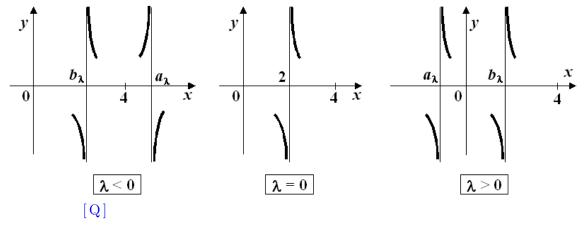
Ainsi
$$\lim_{x \to a_{\lambda}^{-}} d_{\lambda}(x) = 0^{+}, \lim_{x \to a_{\lambda}^{+}} d_{\lambda}(x) = 0^{-}, \lim_{x \to b_{\lambda}^{-}} d_{\lambda}(x) = 0^{-}, \lim_{x \to b_{\lambda}^{+}} d_{\lambda}(x) = 0^{+}.$$

Donc
$$\lim_{x \to a_{\lambda}^{-}} f_{\lambda}(x) = -\infty$$
, $\lim_{x \to a_{\lambda}^{+}} f_{\lambda}(x) = +\infty$, $\lim_{x \to b_{\lambda}^{-}} f_{\lambda}(x) = -\infty$, $\lim_{x \to b_{\lambda}^{+}} f_{\lambda}(x) = +\infty$.

– Si $\lambda = 0$, on a $0 < b_{\lambda} = 2 < 4$, et a_{λ} n'est pas défini.

Donc
$$\lim_{x \to 2^-} d_{\lambda}(x) = 0^-$$
, $\lim_{x \to 2^+} d_{\lambda}(x) = 0^+$ puis $\lim_{x \to 2^-} f_{\lambda}(x) = -\infty$, $\lim_{x \to 2^+} f_{\lambda}(x) = +\infty$

On voit maintenant l'allure des asymptotes verticales, dans les différents cas.



(c) • On commence par traiter le cas $\lambda = 0$.

D'après l'énoncé, il faut arriver à $f_{\lambda}(x) = ax^2 + bx + c + \frac{d}{x} + o(\frac{1}{x})$.

Il est plus simple de développer en 0. On pose $x = \frac{1}{X}$ et on trouve :

$$f_0(x) = \frac{4x}{\ln\left|\frac{x}{x-4}\right|} = \frac{-4}{X\ln(1-4X)} = \frac{4}{X\left(4X+8X^2+\frac{64}{3}X^3+64X^4+o(X^4)\right)}$$

$$= \frac{1}{X^2}\left(1+2X+\frac{16}{3}X^2+16X^3+o(X^3)\right)^{-1}$$

$$= \frac{1}{X^2}\left[1-\left(2X+\frac{16}{3}X^2+16X^3\right)+\left(4X^2+\frac{64}{3}X^3\right)-\left(8X^3\right)+o(X^3)\right]$$

$$= \frac{1}{X^2}\left(1-2X-\frac{4}{3}X^2-\frac{8}{3}X^3+o(X^3)\right)$$

$$= \frac{1}{X^2}-\frac{2}{X}-\frac{4}{3}-\frac{8X}{3}+o(X)$$

On obtient $f_0(x) = x^2 - 2x - \frac{4}{3} - \frac{8}{3x} + o\left(\frac{1}{x}\right)$ en revenant à la variable x.

Ainsi C_0 est asymptote à la parabole $\mathcal{P}: y(x) = x^2 - 2x - \frac{4}{3}$ quand $x \to \pm \infty$.

Le placement est donné par le signe de la quantité $f_0(x) - y(x) \approx -\frac{8}{3x}$.

Ainsi C_0 est au-dessus de \mathcal{P} quand $x \to -\infty$ et en-dessous quand $x \to +\infty$.

Plus modestement, on a $f_0(x) \sim x^2$ au voisinage de $\pm \infty$, donc $\lim_{x \to \infty} = +\infty$.

La branche infinie est bien sûr une "branche parabolique" de direction Oy.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

• On va maintenant traiter le cas général $\lambda \neq 0$. On pose toujours X = 1/x.

$$f_{\lambda}(x) = \frac{4}{X(\alpha - \ln(1 - 4X))} = \frac{4}{\alpha X \left(1 + \frac{4}{\alpha} X + \frac{8}{\alpha} X^2 + \frac{64}{3\alpha} X^3 + o(X^3)\right)}$$

$$= \frac{4}{\alpha X} \left[1 - \left(\frac{4}{\alpha} X + \frac{8}{\alpha} X^2 + \frac{64}{3\alpha} X^3\right) + \left(\frac{16}{\alpha^2} X^2 + \frac{64}{\alpha^2} X^3\right) - \frac{64}{\alpha^3} X^3 + o(X^3)\right]$$

$$= \frac{4}{\alpha X} \left[1 - \frac{4}{\alpha} X + \frac{8(2 - \alpha)}{\alpha^2} X^2 - \frac{64(\alpha^2 - 3\alpha + 3)}{3\alpha^3} X^3 + o(X^3)\right]$$

Ainsi :
$$f_{\lambda}(x) = \frac{4}{\alpha} x - \frac{16}{\alpha^2} + \frac{32(2-\alpha)}{\alpha^3} \frac{1}{x} - \frac{256(\alpha^2 - 3\alpha + 3)}{3\alpha^4} \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$$

Cela traduit l'existence de l'asymptote oblique $y=\frac{4}{\alpha}\,x-\frac{16}{\alpha^2}$ quand $x\to\pm\infty.$

- Si
$$\alpha = 2$$
, on a $f_2(x) = 2x - 4 - \frac{16}{x^2} + o\left(\frac{1}{x^2}\right)$.

Dans ce cas, la courbe est en-dessous de son asymptote quand $x \to \pm \infty$.

– Si
$$\alpha \neq 2$$
, le placement est donné par le signe de $\frac{2-\alpha}{\alpha x}$.

Si $\alpha < 0$ ou $\alpha > 2$, la courbe est au-dessus de son asymptote au voisinage de $-\infty$, et en-dessous au voisinage de $+\infty$.

Si $0 < \alpha < 2$, la courbe est en-dessous de son asymptote au voisinage de $-\infty$, et au-dessus au voisinage de $+\infty$.

S'il n'y avait pas eu le cas particulier $\alpha=2$, on aurait pu se contenter de pousser le développement généralisé de $f_{\lambda}(x)$ à l'ordre immédiatement inférieur. [Q]

3. (a) On trouve
$$g_{\lambda}(x) = \lambda + \ln\left|\frac{x}{x-4}\right| - x\left(\frac{1}{x} - \frac{1}{x-4}\right) = \ln\left|\frac{x}{x-4}\right| + \lambda + \frac{4}{x-4}$$
.

L'application g_{λ} est définie et dérivable sur $\mathbb{R} \setminus \{0,4\}$.

On observe que $\lim_{x \to \infty} g_{\lambda}(x) = \lambda$ et que $\lim_{x \to 0} g_{\lambda}(x) = -\infty$.

D'autre part
$$\lim_{x \to 4} (x - 4) \ln |x - 4| = 0 \Rightarrow \lim_{x \to 4} (x - 4) g_{\lambda}(x) = 4 \Rightarrow g_{\lambda}(x) \stackrel{\sim}{\underset{4}{\sim}} \frac{4}{x - 4}$$

On en déduit $\lim_{x \to 4^-} g_{\lambda}(x) = -\infty$ et $\lim_{x \to 4^+} g_{\lambda}(x) = +\infty$.

Enfin, pour
$$x \notin \{0,4\}$$
, on trouve : $g'_{\lambda}(x) = \frac{1}{x} - \frac{1}{x-4} - \frac{4}{(x-4)^2} = \frac{8(2-x)}{x(x-4)^2}$

On constate que $g_{\lambda}(2) = \lambda - 2$.

Voici le tableau des variations de g_{λ} .

 $f'_{\lambda}(x)$ a le signe de $g_{\lambda}(x)$ sur \mathcal{D}_{λ} .

On voit que le nombre de solutions de $g_{\lambda}(x) = 0$ dépend du placement de λ par rapport à 0 et à 2.

	I			
X	-∞ C) 2	2 4	l +∞
g'	_	+ () –	_
_	λ	λ-2		+∞
g	7	/	×	7
	$-\infty$	$-\infty$	00	λ

On remarque qu'aux points $x \in \{a_{\lambda}, b_{\lambda}\}$, on a $g_{\lambda}(x) = \frac{4}{x-4} \neq 0$.

Autrement dit, les points éventuels où g_{λ} s'annule sont distincts de a_{λ} et de b_{λ} . [Q]

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.