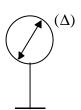
OPTIQUE ONDULATOIRE

COURS

CH.30bis: POLARISATION DE LA LUMIERE


<u>Plan</u> (Cliquer sur le titre pour accéder au paragraphe)

CH.30bis: P	OLARISATION DE LA LUMIERE
I. POLARI	OLARISATION DE LA LUMIERE
I.1. D	EFINITION
I.2. L	OI DE MALUS
II. LAMES	UNIAXES
II.1. D	EFINITION2
II.2. Pl	ROPRIETES
	CTION D' UNE LAME UNIAXE SUR UNE LUMIERE POLARISEE
	Polarisation rectiligne
	Polarisation circulaire et lame quart d'onde
II.4. Pl	RODUCTION ET ANALYSE D' UNE LUMIERE POLARISEE3
	ERENTS TYPES DE POLARISEURS
III.1.	POLARISATION PAR DICHROISME
III.1.1.	Principe
	Caractéristiques des polaroïds
III.2.	POLARISATION PAR BIREFRINGENCE

I. POLARISEURS

I.1. <u>DEFINITION</u>

- Un polariseur est un système optique permettant de transformer une lumière de polarisation quelconque en lumière polarisée **rectilignement**.
- On peut représenter un tel dispositif par :

L'axe (Δ) indique la direction de vibration du champ électrique \vec{E} émergent; en général, l'utilisateur a la possibilité de faire tourner (Δ) par rapport à une monture fixe.

I.2. LOI DE MALUS

ullet Si l'on dispose l'un derrière l'autre deux polariseurs dont les directions de polarisation font entre elles un angle $m{a}$, on obtient à la sortie une onde lumineuse polarisée rectilignement (dans la direction imposée par le second polariseur) et dont l'intensité I_2 s'exprime en fonction de l'intensité I_1 en sortie du premier polariseur, par la relation :

$$I_2 = I_1 \times T \times \cos^2 \mathbf{a}$$
 avec: $0 \le T \le 1$

- **Rq1**: T est le facteur de transmission en énergie du second polariseur (pour T=1, le polariseur est idéal, c'est-à-dire sans absorption).
 - Rq2: le second polariseur est également appelé « analyseur ».
 - **Rq3**: pour a = p/2 ou 3p/2, il y a extinction du faisceau lumineux, on dit que les polariseurs sont « **croisés** ».

Page 1 Christian MAIRE © EduKlub S.A.

Tous doits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.

COURS

OPTIQUE ONDULATOIRE

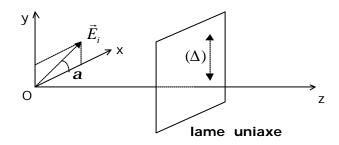
II. LAMES UNIAXES

II.1. <u>DEFINITION</u>

Ce sont des lames minces, à faces parallèles, taillées dans un cristal « uniaxe », ayant la **symétrie de révolution (**d'un point de vue des propriétés optiques) autour d'un axe privilégié appelé « axe optique » ; par construction, cet axe est parallèle aux faces de la lame.

II.2. PROPRIETES

- ullet Considérons une lame uniaxe dont les faces sont parallèles au plan xOy, et d'épaisseur e selon la direction de propagation de la lumière.
- ullet Choisissons l'axe Oy parallèle à l'axe optique (Δ) de la lame :
- ullet pour une onde polarisée rectilignement suivant Ox (perpendiculairement à l'axe Δ), la lame possède un indice « **ordinaire** », soit n_{o} .
- ullet pour une onde polarisée rectilignement suivant Oy (parallèlement à l'axe Δ), la lame possède un indice « **extraordinaire** », soit $n_{\scriptscriptstyle E}$.
- ullet Entre deux ondes monochromatiques (de longueur d'onde $m{I}_0$) polarisées respectivement suivant Oy et Ox, la traversée de la lame d'épaisseur e entraı̂ne l'apparition d'un déphasage supplémentaire $m{j}$ tel que :


$$\mathbf{j} = \mathbf{j}_{y/x} = 2\mathbf{p} \frac{\mathbf{d}_{y/x}}{\mathbf{I}_0} = \frac{2\mathbf{p}e}{\mathbf{I}_0} (n_E - n_O)$$
 (1)

- Cas particuliers :
 - si $|d_{y/x}| = I_0/4$: $|j| = p/2 \Rightarrow$ la lame est dite « quart d'onde », ou « lame I/4 ».
 - si $\left| \boldsymbol{d}_{y/x} \right| = \boldsymbol{I}_0 / 2$: $\left| \boldsymbol{j} \right| = \boldsymbol{p}$ \Rightarrow la lame est dite « **demi onde** », ou « lame $\boldsymbol{I} / 2$ ».
- Rq1: l'axe pour lequel l'indice est le plus grand correspond à une vitesse de propagation de l'onde (v=c/n) plus petite: on parle « d'axe lent »; logiquement, l'axe pour lequel l'indice est le plus petit est appelé « axe rapide ».

Rq2: si $n_E \succ n_O$, le milieu est dit «**positif** », l'axe extraordinaire est alors l'axe lent, l'axe ordinaire étant l'axe rapide (c'est le cas du quartz SiO_2); si $n_E \prec n_O$, le milieu est dit « **négatif** » et les dénominations sont inversées (cas de la calcite $CaCO_3$).

II.3. ACTION D' UNE LAME UNIAXE SUR UNE LUMIERE POLARISEE

II. 3.1. Polarisation rectiligne

On considère une onde incidente se propageant selon Oz, et dont le champ électrique \vec{E}_i est polarisé rectilignement selon une direction faisant un angle \boldsymbol{a} avec l'axe Ox.

L'axe optique de la lame, (Δ) , est parallèle à l'axe Oy.

- Le champ incident s'écrit donc : $\vec{E}_i = E_0 \cos \mathbf{a} \cos(\mathbf{w}t kz)\vec{e}_x + E_0 \sin \mathbf{a} \cos(\mathbf{w}t kz)\vec{e}_y$
- ullet En tenant compte d'un déphasage commun ullet y , dû à la traversée de la lame, et du déphasage supplémentaire $m{j}$, le champ transmis a pour expression :

Page 2 Christian MAIRE © EduKlub S.A.

Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation individuelle et privée sont interdites.