

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES D'ORDRE 1 OU 2

Table des matières

I	Équations différentielles linéaires d'ordre 1	2
II	"Équadiffs" linéaires d'ordre 2 à coefficients constants	4

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

I Équations différentielles linéaires d'ordre 1

Dans ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit J un intervalle de \mathbb{R} d'intérieur non vide.

Soient a, b, c trois applications continues sur J, à valeurs dans \mathbb{K} .

Dans cette section, on note (E) l'équation : a(x)y' + b(x)y = c(x).

On dit que (E) est une équation différentielle linéaire d'ordre 1.

On note (H) l'équation différentielle : a(x)y' + b(x)y = 0 (équation homogène associée à (E).)

Important: les résultats concernant (E) et (H) supposent qu'on se place sur un sous-intervalle I de J sur lequel la fonction $x \mapsto a(x)$ ne s'annule pas. Pour résoudre (E) ou (H) sur J tout entier, il faudra procéder intervalle par intervalle (entre deux zéros successifs de a), et vérifier ensuite s'il est possible de "recoller" des solutions sur des intervalles consécutifs.

Proposition (solution générale de (H))

On considère (H) : a(x)y' + b(x)y = 0, sur un intervalle I où a(x) ne s'annule pas. La solution générale de (H) sur I est donnée par $y(x) = \lambda e^{-B(x)}$, où B est une primitive particulière de $x \mapsto \frac{b(x)}{a(x)}$ sur I, et où λ est un scalaire quelconque.

Remarques et exemples

- Le résultat précédent montre que l'ensemble S_H des solutions y de (H) sur I est égal à l'ensemble des multiples d'une solution particulière y_0 non nulle de (H) sur I. On exprime cette situation en disant que S_H est une droite vectorielle. On voit d'ailleurs qu'une solution de (H) sur I, si elle n'est pas la solution nulle, ne s'annule jamais sur I.
- Si on "devine" une solution non nulle de (H) sur I, alors on connait la solution générale (sans avoir à passer par la formule précédente.)
 On constate par exemple que x → ½ est solution de (H) : xy' + y = 0 sur ℝ^{-*} et sur ℝ^{+*}.
 Sur I = ℝ^{-*} ou ℝ^{-*}, la solution générale de (H) est donc l'ensemble des x → ½, (λ ∈ K).

Proposition (solution générale de (E))

On considère (E): a(x)y' + b(x)y = c(x), sur un intervalle I où a(x) ne s'annule pas. La solution générale de (E) sur I est donnée par $y(x) = (C(x) + \lambda)e^{-B(x)}$, où B est une primitive particulière de $x \mapsto \frac{b(x)}{a(x)}$ sur I, λ est un scalaire quelconque, et C est une primitive particulière de $x \mapsto \frac{c(x)}{a(x)}e^{B(x)}$ sur I.

Remarques

- L'expression précédente montre que pour obtenir la solution générale S_E de (E) sur I, il suffit d'ajouter à une solution particulière de (E) sur I la solution générale de (H) sur I.
- Par exemple, une solution particulière de (E) : xy' + y = 2x est l'application $x \mapsto x$. La solution générale de (E) sur $I = \mathbb{R}^{+*}$ ou \mathbb{R}^{-*} est donc $y(x) = x + \frac{\lambda}{x}$, avec $\lambda \in \mathbb{K}$.
- Autre exemple : considérons l'équation (E) : $\cos(x) y' + \sin(x) y = 1$, sur $I =] \frac{\pi}{2}, \frac{\pi}{2}[$. Une solution particulière de (E) (resp. de (H)) sur I est $x \mapsto \sin(x)$ (resp. $x \mapsto \cos(x)$.) La solution générale de (E) sur I s'écrit donc $y(x) = \sin(x) + \lambda \cos(x)$, avec $\lambda \in \mathbb{K}$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.