

Analyse 1

EXERCICES DE MATHEMATIQUES

ANALYSE

ENONCE DE L'EXERCICE

ENONCE:

ENONCE-18

1) Soit f une fonction continue sur l'intervalle [0;1].

Montrer que l'intégrale $\int_0^1 \frac{f(x)}{\sqrt{1-x}} dx$ est convergente.

2) Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{x^n}{\sqrt{1-x}} dx$.

Montrer que la suite $(I_n)_{n\geq 0}$ est convergente.

3) a) Montrer que pour tout $n \ge 1$, on a :

$$I_n = \frac{2n}{2n+1}I_{n-1}.$$

b) En déduire l'existence et la nature de la série de terme général $v_n = \ln(I_n) - \ln(I_{n-1})$, puis la limite de la suite $(I_n)_{n\geq 0}$.

4) Pour $n \in \mathbb{N}$, on pose : $J_n = \sqrt{n}I_n$ et $K_n = \sqrt{n+1}I_n$.

a) Montrer que les suites $(J_n)_{n\geq 0}$ et $(K_n)_{n\geq 0}$ sont adjacentes.

b) En déduire qu'il existe un réel $\alpha > 0$ tel que

$$I_n \underset{+\infty}{\sim} \frac{\alpha}{\sqrt{n}}$$

5) a) Calculer I_n en fonctions de n.

b) En admettant que $n! \underset{+\infty}{\sim} n^n e^{-n} \sqrt{2\pi n}$ (formule de Stirling),

montrer que
$$I_n \underset{+\infty}{\sim} e \left(\frac{2n}{2n+1}\right)^{2n+1} \frac{\sqrt{\pi}}{\sqrt{n}}$$
.

c) Déterminer la valeur de α .

2 exercice 18

CORRIGE DE L'EXERCICE

CORRIGE:

QUESTION-1

La fonction f est continue sur [0;1], donc sa valeur absolue |f| est majorée sur [0;1] par un réel que nous noterons M.

Nous avons donc : $\forall t \in [0, 1], 0 \le |f(t)| \le M$.

Multiplions cet encadrement par $\frac{1}{\sqrt{1-t}} > 0$; on obtient :

$$\forall t \in [0;1[,\ 0 \leq \frac{|f(t)|}{\sqrt{1-t}} \leq \frac{M}{\sqrt{1-t}}$$

L'intégrale $\int_0^1 \frac{dt}{\sqrt{1-t}}$ est impropre en 1 car $t \longmapsto \frac{1}{\sqrt{1-t}}$ est continue sur [0;1[. Elle est convergente car $t \longmapsto \frac{1}{\sqrt{1-t}}$ est une fonction de référence sur [0;1[de la forme $t \longmapsto \frac{1}{(1-t)^{\alpha}}$ avec $\alpha = \frac{1}{2} < 1$.

Donc l'intégrale $\int_0^1 \frac{Mdt}{\sqrt{1-t}}$ est convergente.

Le théorème de comparaison des fonctions positives permet de conclure que l'intégrale $\int_0^1 \frac{|f(t)|dt}{\sqrt{1-t}}$ est convergente.

Cela veut dire que l'intégrale $\int_0^1 \frac{f(t)dt}{\sqrt{1-t}}$ est absolument convergente, donc convergente.

QUESTION-2

Remarquons que les fonctions $t \mapsto t^k$, pour $k \in \mathbb{N}$, sont continues sur [0;1], donc d'après la question 1) les intégrales I_k sont convergentes.

Pour $n \in \mathbb{N}$,

$$I_{n+1} - I_n = \int_0^1 \frac{t^{n+1}dt}{\sqrt{1-t}} - \int_0^1 \frac{t^n dt}{\sqrt{1-t}}$$
$$= \int_0^1 \frac{t^n(t-1)dt}{\sqrt{1-t}}.$$

Or sur $[0;1[,\frac{t^n(t-1)dt}{\sqrt{1-t}}\leq 0;$ les bornes étant dans l'ordre croissant, on conclut que $\int_0^1 \frac{t^n(t-1)dt}{\sqrt{1-t}}\leq 0$, donc $I_{n+1}-I_n\leq 0$.

La suite (I_n) est décroissante. Elle est minorée par 0: le théorème des suites monotones bornées permet de conclure que la suite (I_n) est convergente.

QUESTION-3

a)
page 2

Jean MALLET et Michel MITERNIQUE

© EDUKLUB SA
Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres
autre que la consultation individuelle et privée sont interdites.