

PROBLEMES DE MATHEMATIQUES

ANALYSE

ENONCE DU PROBLEME

ENONCE-2

On considère, pour $n \ge 1$, la fonction polynomiale P_n définie par

$$\forall x \in \mathbb{R}, \ P_n(x) = x^n + x - 1$$

- 1) Montrer que l'équation $P_n(x) = 0$ admet une unique solution positive que l'on notera x_n et vérifier que $x_n \in]0,1[$.
- 2) Montrer que la suite (x_n) est croissante et justifier l'existence d'une limite ℓ pour la suite (x_n) telle que $\ell \in]0,1[$.
- 3) En raisonnant par l'absurde, montrer que $\ell=1$.
- 4) On pose $u_n = 1 x_n$. Montrer que $\ln(1 u_n) = \frac{1}{n} \ln(u_n)$ et conclure que $u_n \underset{(+\infty)}{\sim} -\frac{\ln(u_n)}{n}$
- **5) a)** Soit deux suites numériques (a_n) et (b_n) strictement positives : on suppose $a_n \underset{(+\infty)}{\sim} b_n$ et a_n tend vers une limite positive ou nulle non égale à 1 lorsque n tend vers $+\infty$. Montrer que $\ln a_n \underset{(+\infty)}{\sim} \ln b_n$
- **b)** Montrer que $u_n \underset{(+\infty)}{\sim} \left(\frac{\ln n}{n} \frac{\ln(-\ln u_n)}{n} \right)$