

www.KlubPrepa.net l'internet dédié aux prépas HEC

ECOLE DE HAUTES ETUDES COMMERCIALES DU NORD

Concours d'admission sur classes préparatoires

MATHEMATIQUES

Option économique

Mardi 15 mai 2001, de 8h à 12h

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer, dans la mesure du possible, les résultats de leurs calculs. Ils ne doivent faire usage d'aucun document ; seule l'utilisation d'une règle graduée est autorisée.

L'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Exercice 1

E désigne un espace vectoriel sur IR, rapporté à une base $\mathcal{B} = (e_1, e_2, e_3)$.

On désigne par a un réel non nul et on considère l'endomorphisme f_a de E, défini par :

$$f_a(e_2) = 0$$
 et $f_a(e_1) = f_a(e_3) = a e_1 + e_2 - a e_3$.

- 1) a. Écrire la matrice A_a de f_a relativement à la base \mathcal{B} et calculer A_a^2 .
 - b. Montrer que 0 est la seule valeur propre de A_a .
 - c. A_a est-elle diagonalisable? Est-elle inversible?
- 2) On pose $u_1 = a e_1 + e_2 a e_3$.
 - a. Montrer que $\mathcal{B}' = (u_1, e_2, e_3)$ est une base de E.
 - b. Vérifier que la matrice de f_a relativement à la base \mathcal{B} ' est $K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Dans la suite, on cherche à caractériser les endomorphismes g de E tels que $g \circ g = f_a$.

- 3) On suppose qu'un tel endomorphisme g existe et on note M sa matrice dans \mathcal{B}' .
 - a. Expliquer pourquoi $M^2 = K$ puis montrer que MK = KM.
 - b. Déduire de ces deux relations que $M = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$, x, y et z étant 3 réels tels que xz = 1.
- 4) Réciproquement, vérifier que tout endomorphisme g dont la matrice dans \mathcal{B} est du type ci-dessus est solution de $g \circ g = f_a$.

LES AZZALES

Des méthodes, des exercices, des corrigés sur le www.KlubPrepa.net

www.KlubPrepa.net

l'internet dédié aux prépas HEC

Exercice 2

On désigne par n un entier naturel supérieur ou égal à 2.

On considère une épreuve aléatoire pouvant aboutir à 3 résultats différents R_1 , R_2 et R_3 de probabilités respectives P_1 , P_2 et P_3 . On a donc $P_1 + P_2 + P_3 = 1$ et on admet que, pour tout i de $\{1, 2, 3\}$, $0 < P_i < 1$.

On effectue n épreuves indépendantes du type de celle décrite ci-dessus.

Pour tout i de $\{1, 2, 3\}$, on note X_i la variable aléatoire qui vaut 1 si le résultat numéro i n'est pas obtenu à l'issue de ces n épreuves et qui vaut 0 sinon.

On désigne par X la variable aléatoire égale au nombre de résultats qui n'ont pas été obtenus à l'issue des n épreuves.

- 1) a. Justifier soigneusement que $X = X_1 + X_2 + X_3$.
 - b. Donner la loi de X_i pour tout i de $\{1, 2, 3\}$.
 - c. En déduire l'espérance de X, notée E(X).

La suite de cet exercice consiste à rechercher les valeurs des réels P_i en lesquelles E(X) admet un minimum local. Pour ce faire, on note f la fonction définie sur l'ouvert $]0,1[\times]0,1[$ de \mathbb{R}^2 par : $f(x,y) = (1-x)^n + (1-y)^n + (x+y)^n$.

- 2) a. On pose $P_1 = x$ et $P_2 = y$. Vérifier que E(X) = f(x, y).
 - b. Montrer que f est une fonction de classe C^2 sur $]0,1[\times]0,1[$.
- 3) a. Déterminer les dérivées partielles d'ordre 1 de f.
 - b. En déduire que le seul point en lesquels les dérivées partielles d'ordre 1 de f s'annulent simultanément est le point $(\frac{1}{3}, \frac{1}{3})$.
- 4) a. Démontrer que f présente un minimum local au point $(\frac{1}{3}, \frac{1}{3})$.
 - b. Donner la valeur de E(X) correspondant à ce minimum.

Exercice 3

Soit f la fonction définie par : $\begin{cases} f(x) = 0 & \text{si} \quad x < 0. \\ f(x) = xe^{-\frac{x^2}{2}} & \text{si} \quad x \ge 0. \end{cases}$

1) Vérifier que f est une densité de probabilité.

La durée de vie d'un certain composant électronique est une variable aléatoire X dont une densité est f.

- 2) a. Déterminer la fonction de répartition F de X.
 - b. Calculer la médiane de X, c'est-à-dire le réel μ tel que $P(X \le \mu) = \frac{1}{2}$.
- 3) On appelle mode de la variable aléatoire X tout réel x en lequel f atteint son maximum. Montrer que X a un seul mode, noté M_o , et le déterminer.
- 4) a. En utilisant un résultat connu concernant la loi normale, établir que X a une espérance et montrer que $E(X) = \frac{\sqrt{2\pi}}{2}$.
 - b. Calculer, à l'aide d'une intégration par parties, la variance de X.

www.KlubPrepa.net l'internet dédié aux prépas HEC

Problème

Partie 1

On pose, pour tout entier n supérieur ou égal à $1: v_n = \sum_{k=1}^n \frac{1}{k}$.

- 1) Montrer que : $\forall k \in \mathbb{N}^*, \ \frac{1}{k+1} \le \int_k^{k+1} \frac{dt}{t}$.
- 2) En déduire que : $\forall n \in \mathbb{N}^*, v_n \leq ln(n) + 1$.

Partie 2

On considère la suite (u_n) définie par son premier terme $u_0 = 1$ et par la relation suivante, valable pour tout n de \mathbb{N} : $u_{n+1} = u_n + \frac{1}{u_n}$.

- 1) a. Montrer par récurrence que chaque terme de cette suite est parfaitement défini et strictement positif.
 - b. En déduire le sens de variation de la suite (u_n) .
- 2) a. Pour tout k de \mathbb{N} , exprimer $u_{k+1}^2 u_k^2$ en fonction de u_k^2 .
 - b. En déduire que : $\forall n \in \mathbb{N}^*, \ u_n^2 = 2n + 1 + \sum_{k=0}^{n-1} \frac{1}{u_k^2}$.
 - c. Montrer que: $\forall n \in \mathbb{N}^*, u_n^2 \ge 2n + 1$. En déduire la limite de la suite (u_n) .
- 3) a. À l'aide du résultat précédent, montrer que, pour tout entier n supérieur ou égal à 2 : $u_n^2 \le 2n + 2 + \frac{1}{2}v_{n-1}$.
 - b. En utilisant la partie 1, établir que, pour tout entier n supérieur ou égal à 2 : $u_n^2 \le 2n + \frac{5}{2} + \frac{\ln(n-1)}{2}$.
 - c. En déduire finalement que : $u_n \sim \sqrt{2n}$.

Partie 3

- 1) Écrire un programme en Turbo Pascal permettant de calculer et d'afficher u_n lorsque l'utilisateur entre la valeur de n au clavier.
- 2) a. Écrire un deuxième programme, toujours en Turbo Pascal, qui permette de détermine et d'afficher le plus petit entier naturel n pour lequel $u_n \ge 100$.
 - b. On donne : $\ln 2 \le 0.70$ et $\ln 5 \le 1.61$. En déduire un majorant de $\ln 5000$.
 - c. Montrer que l'entier n trouvé en 2a) est compris entre 4995 et 5000.

ANNALES DE MATHEMATIQUES 2001

EDHEC

CORRIGE

EXERCICE-I

QUESTION-1

1-a)

Par définition de la matrice d'un endomorphisme dans une base donnée,

$$E_a = \begin{pmatrix} a & 0 & a \\ 1 & 0 & 1 \\ -a & 0 & -a \end{pmatrix}.$$

Un calcul sans la moindre difficulté donne $A_a^2 = (0)$.

1-b) _____

Première façon de répondre : Si λ est valeur propre de A_a , alors il existe une matrice colonne $X \neq (0)$ telle que $A_aX = \lambda X$. En multipliant à gauche les deux membres par A_a on obtient : $A_a^2X = A_a(\lambda X) = \lambda A_aX = \lambda^2 X$. Or $A_a^2 = (0)$, donc $A_a^2X = (0)$; l'égalité précédente devient $\lambda^2 X = (0)$. Or $X \neq (0)$, donc $\lambda^2 = 0$, c'est-à-dire $\lambda = 0$. 0 est la seule valeur propre **possible**.

Or $A_0\begin{pmatrix} 0\\0\\1 \end{pmatrix} = (0)$ (ceci vient du fait que la deuxième colonne de A_a est nulle). Donc 0 est **effectivement** valeur propre.

La matrice A_a admet 0 pour unique valeur propre.

Deuxième façon de répondre : On peut aussi dire : le polynôme X^2 est un polynôme annulateur de A. Et le cours nous apprend que les seules valeurs possibles de A sont les racines de ce polynôme, et on retrouve, bien-sûr, le même résultat.

1-c)

Raisonnons par l'absurde : si A_a est diagonalisable, elle est semblable à la matrice diagonale $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = (0)$. Il existe donc une matrice $P \in \mathcal{M}_3(\mathbb{R})$, inversible, telle que $A = P(0)P^{-1} = (0)$. Ce qui est faux.

Conclusion : la matrice A_a n'est pas diagonalisable.

D'après le cours, on sait que A_a admet 0 comme valeur propre équivaut à A_a non inversible, tout simplement parce qu'alors $Ker(A - 0I) = Ker A \neq \{0\}$.

page 1 **Jean MALLET et Michel MITERNIQUE** © EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.

La matrice A_a n'est pas inversible.

QUESTION-2

2-a)

La matrice des coordonnées des vecteurs u_1, e_2, e_3 dans la base (e_1, e_2, e_3) de E est **par**

définition
$$Q = \begin{pmatrix} a & 0 & 0 \\ 1 & 1 & 0 \\ -a & 0 & 1 \end{pmatrix}$$
.

C'est une matrice triangulaire dont aucun des termes diagonaux n'est nul ; la matrice Q est inversible.

Q inversible équivaut à (u_1, e_2, e_3) est une base de E.

2-b) _____

Remarquons que $f_a(e_1)=(-a,0,a)=u_1$. Donc $f_a(u_1)=f_a(f_a(e_1))=f_a^2(e_1)=0$ car f_a^2 est l'endomorphisme nul (sa matrice A_a^2 est nulle).

 $f_a(e_2) = 0$ et $f_a(e_3) = u_1$. Par définition de la matrice d'un endomorphisme dans une base, la matrice de f_a dans la base \mathcal{B}' est

$$K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

QUESTION-3

3-a)

Soit g un endomorphisme de \mathbb{R}^2 associé à M dans la base \mathcal{B}' ; alors M^2 est la matrice de $g^2 = f$, c'est dire que $M^2 = K$.

Si M est la matrice de g dans la base $\mathcal{B}',$ alors M^2 est la matrice de $g^2=f.$ Alors $MK=MM^2=M^2M=KM.$

$$MK = KM$$
.

3-b)

Cherchons
$$M = \begin{pmatrix} m & x & y \\ n & q & z \\ p & r & s \end{pmatrix}$$

$$MK = \begin{pmatrix} m & x & y \\ n & q & z \\ p & r & s \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & m \\ 0 & 0 & n \\ 0 & 0 & p \end{pmatrix}$$

$$KM = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} m & x & y \\ n & q & z \\ p & r & s \end{pmatrix} = \begin{pmatrix} p & r & s \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

L'égalité MK = KM équivaut au système $\begin{cases} m = s \\ p = r = n = 0. \end{cases}$

Donc
$$M = \begin{pmatrix} m & x & y \\ 0 & q & z \\ 0 & 0 & m \end{pmatrix}$$

page 2 Jean MALLET et Michel MITERNIQUE

© EDUKLUB SA

Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.

Résolvons maintenant l'équation $M^2 = K$, c'est-à-dire

$$\begin{pmatrix} m & x & y \\ 0 & q & z \\ 0 & 0 & m \end{pmatrix} \begin{pmatrix} m & x & y \\ 0 & q & z \\ 0 & 0 & m \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} m^2 & x(m+q) & 2my+xz \\ 0 & q^2 & z(m+q) \\ 0 & 0 & m^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On obtient

On obtient
$$\begin{cases} m^2 &= 0 \\ q^2 &= 0 \\ x(m+q) &= 0 \\ z(m+q) &= 0 \\ 2my + xz &= 1 \end{cases}; \quad \begin{cases} m=q &= 0 \\ xz &= 1. \end{cases}$$

Si q existe, sa matrice dans la base \mathcal{B}' est

$$\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \quad \text{avec } xz = 1, \ (x, y, z) \in \mathbb{R}^3.$$
 (1)

QUESTION-4

Soit g un endomorphisme dont la matrice dans la base \mathcal{B}' est une matrice M donnée par la formule (1). Alors $M^2 = \begin{pmatrix} 0 & 0 & xz \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = K$ puisque xz = 1.

> **Conclusion :** un endomorphisme g de E vérifie la relation $g \circ g = f_a$ si et seulement si dans la base \mathcal{B}' sa matrice est du type M où $(x, y, z) \in \mathbb{R}^3$ et xz = 1.

EXERCICE-II

QUESTION-1

1-a)

Si n=2.

- . Un seul résultat peut être apparu : X=2 ; l'une des trois variables X_i est nulle, les deux autres X_j et X_k valent 1. Donc $\sum_{i=1}^{3} X_r = 2$. C'est bien la valeur prise par X.
- . Deux résultats peuvent être apparus : X=1 ; deux des trois variables valent zéro, l'autre vaut 1 ; la somme vaut alors 1 et c'est bien la valeur de X.
- Si $n \geq 3$.
- . Les deux cas précédents peuvent se produire. On peut voir apparaître à l'issue des trois épreuves les trois résultats ; dans ce cas X=0 et $X_1=X_2=X_3=0$, donc la somme $\sum_{r=1}^{3} X_r = 0 = X$.

$$\forall n \in \mathbb{N}^* - \{1\}, \ X = X_1 + X_2 + X_3.$$

Jean MALLET et Michel MITERNIQUE (c) EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.