

EXERCICES DE MATHEMATIQUES

PROBABILITES

ENONCE DE L'EXERCICE

ENONCE-30

Soit p et q deux entiers naturels. On pose : $B(p,q) = \int_0^1 t^p (1-t)^q dt$.

- 1) a) Calculer B(p,0). Montrer que B(p,q) = B(q,p).
- **b)** Pour $q \ge 1$, trouver une relation entre B(p,q) et B(p+1,q-1).
- c) En déduire la valeur de B(p,q).
- 2) Soit n un entier naturel supérieur ou égal à 2. n automobilistes (que l'on numérote $1, \ldots, n$) vont faire le plein dans la seule station d'essence d'un petit village de Bourgogne entre midi (origine des temps) et une heure, de manière indépendante les uns des autres. On note H_k l'heure d'arrivée du conducteur numéro k; on suppose que, pour tout $k \in [1, n]$, H_k suit une loi uniforme sur [0; 1] et que les variables H_k sont mutuellement indépendantes.

On note, pour tout $i \in [1, n]$, Y_i l'heure d'arrivée du i ème automobiliste (qui n'a aucune raison d'être l'automobiliste numéro i).

a) Soit $t \in [0; 1]$. Quelle est la probabilité pour que l'automobiliste numéro k arrive au plus tard à

En déduire la loi de la variable aléatoire N_t égale au nombre d'automobilistes arrivés à la station d'essence au plus tard à l'instant t.

b) Montrer que

$$\forall t \in [0; 1], \ p(Y_i \le t) = \sum_{k=i}^{n} \binom{n}{k} t^k (1-t)^{n-k}.$$

Les variables Y_i sont-elles indépendantes ?

- 3) a) Montrer que Y_i est une variable à densité; on notera f_i une densité de Y_i .
- b) Montrer que

$$\forall t \in]0; 1[, f_i(t) = n \binom{n-1}{i-1} t^{i-1} (1-t)^{n-i}.$$

On rappelle que, pour
$$k / 1 \le k \le n - 1$$
,
$$k \binom{n}{k} = n \binom{n - 1}{k - 1} \text{ et } (n - k) \binom{n}{k} = n \binom{n - 1}{k}.$$

c) Calculer l'espérance de Y_i .

CORRIGE DE L'EXERCICE NUMERO 30

CORRIGE-30:

QUESTION-1

a)
$$B(p,0) = \int_0^1 t^p dt = \frac{1}{p+1}$$

Dans l'expression de B(p,q), posons u(t) = 1 - t; on a du = u'(t)dt = -dt. Le changement de variable est de classe C^1 sur [0;1].

$$B(p,q) = \int_0^1 t^p (1-t)^q dt = -\int_1^0 (1-u)^p u^q du = \int_0^1 u^q (1-u)^p du.$$

$$B(p,q) = B(q,p).$$

b) _____

Intégrons par parties :

$$u(t) = (1-t)^{q}$$
 ; $u'(t) = -q(1-t)^{q-1}$
 $v'(t) = t^{p}$; $v(t) = \frac{t^{p+1}}{p+1}$.

u et v sont de classe C^1 sur [0;1], pour $q \geq 1$.

$$B(p,q) = \left[\frac{(1-t)^q t^{p+1}}{p+1} \right]_0^1 + \frac{q}{p+1} \int_0^1 t^{p+1} (1-t)^{q-1} dt$$

Le crochet est nul en 0 et en 1, donc

$$\forall p \ge 0, \ q \ge 1, \ B(p,q) = \frac{q}{p+1}B(p+1,q-1).$$

c) _____

Ecrivons cette relation pour $q, q-1, \ldots, 2, 1$.

$$\begin{array}{lcl} B(p,q) & = & \displaystyle \frac{q}{p+1} B(p+1,q-1) \\ B(p+1,q-1) & = & \displaystyle \frac{q-1}{p+2} B(p+2,q-2) \\ & & \qquad \qquad \text{(la somme des termes du couple vaut toujours } p+q \text{)} \end{array}$$

Les fonctions $t \mapsto t^p(1-t)^q$ sont continues, positives sur [0;1], donc les **intégrales sont positives** ou nulles (bornes dans l'ordre croissant).

C'est ce que l'on appelle parfois la positivité de l'intégrale.

Dans ces conditions, les intégrales ne peuvent être nulles que si les fonctions que l'on intègre sont nulles sur [0;1], ce qui n'est évidemment pas le cas. Les intégrales sont donc strictement positives, et par suite non nulles.

Revenons aux égalités.

On fait le produit termes à termes des égalités et on simplifie par le facteur commun **non nul** $B(p+1,q-1)B(p+2,q-2)\dots B(p+q-1,1)B(p+q,0)$.

page 2 **Jean MALLET, Michel MITERNIQUE et France MALLET-ZOUTU** © EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.