

EXERCICE

1. Étude d'une suite et programmation

On note $(c_n)_{n\in\mathbb{N}^*}$ la suite réelle définie pour tout entier n strictement positif par :

$$c_n = \int_0^1 \frac{x^{n-1}}{1+x} \, \mathrm{d}x$$

- a) Montrer que $(c_n)_{n\in\mathbb{N}^*}$ est une suite décroissante de réels positifs.
- b) Montrer que, pour tout entier n strictement positif, l'on a : $c_{n+1} + c_n = \frac{1}{n}$.
- c) Établir, pour tout entier n supérieur ou égal à 2, la double inégalité : $\frac{1}{n} \leqslant 2c_n \leqslant \frac{1}{n-1}$. En déduire un équivalent simple de c_n quand n tend vers l'infini.
- d) Calculer c_1 et prouver, pour tout entier n supérieur ou égal à 2, l'égalité :

$$c_n = (-1)^n \left(\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} - \ln 2 \right)$$

e) Écrire un programme en Turbo-Pascal qui, pour une valeur d'un entier n strictement positif entrée par l'utilisateur, calcule et affiche la valeur de c_n .

2. Étude d'une suite de variables aléatoires à densité

Pour tout entier n strictement positif, on note f_n l'application de $\mathbb R$ dans $\mathbb R$ définie par :

$$f_n(t) = \begin{cases} 0 & \text{si} \quad t < 1\\ \frac{1}{c_n t^n (1+t)} & \text{si} \quad t \geqslant 1 \end{cases}$$

- a) À l'aide d'un changement de variable, établir pour tout entier n strictement positif et pour tout réel x supérieur ou égal à 1, l'égalité : $\int_1^x \frac{1}{t^n(1+t)} \, \mathrm{d}t = \int_{1/x}^1 \frac{u^{n-1}}{1+u} \, \mathrm{d}u \, \cdot$
- b) En déduire que, pour tout entier n strictement positif, f_n est une densité de probabilité.

HEC III 2004

Dans la suite de l'exercice, on suppose que $(X_n)_{n\in\mathbb{N}^*}$ est une suite de variables aléatoires définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$, telle que, pour tout entier n strictement positif, X_n prend ses valeurs dans $[1, +\infty[$ et admet f_n comme densité. On note F_n la fonction de répartition de X_n .

- c) Pour quelles valeurs de n la variable aléatoire X_n admet-elle une espérance? Dans le cas où l'espérance de X_n existe, calculer cette espérance en fonction de c_n et de c_{n-1} .
- d) Dans cette question, exclusivement, on suppose que n est égal à 1. Préciser la fonction F_1 . En déduire l'ensemble des réels y vérifiant $\mathbf{P}([X_1 \leqslant y]) \geqslant \frac{1}{2}$. Déterminer une densité de la variable aléatoire $Z = \ln(X_1)$.
- e) Soit x un réel strictrement supérieur à 1.

Justifier l'encadrement : $0 \leqslant \int_{1/x}^{1} \frac{u^n}{(1+u)^2} du \leqslant \frac{1}{n+1}$

En déduire la limite suivante : $\lim_{n \to +\infty} \left(\int_{1/x}^1 \frac{u^n}{(1+u)^2} du \right)$.

Transformer, pour tout entier naturel n non nul, $F_n(x)$ à l'aide d'une intégration par parties et en déduire l'égalité suivante : $\lim_{n\to+\infty}F_n(x)=1$.

f) Que vaut $\lim_{n\to+\infty} F_n(x)$ si x est un réel inférieur ou égal à 1? Montrer que la suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable que l'on précisera.

PROBLÈME

Dans ce problème, n désigne un entier naturel non nul et E désigne l'espace vectoriel des polynômes à coefficients réels, de degré inférieur ou égal à 2n.

Pour tout entier naturel non nul k, on note X^k le polynôme $x \mapsto x^k$ et on rappelle que la famille $(1, X, \dots, X^{2n})$ est une base de E.

Si a_0, a_1, \ldots, a_{2n} sont 2n+1 réels et Q est le polynôme défini sur \mathbb{R} par : $Q(x) = \sum_{k=0}^{2n} a_k x^k$, on définit le polynôme s(Q) par : $s(Q)(x) = \sum_{k=0}^{2n} a_{2n-k} x^k$.

Autrement dit, s(Q) est le polynôme obtenu à partir de Q en « inversant l'ordre des coefficients ». Par exemple, si n est égal à 2 et si $Q(x) = 4x^4 + 7x^3 + 2x^2 + 1$, on obtient $s(Q)(x) = x^4 + 2x^2 + 7x + 4$.

Les trois parties de ce problème sont largement indépendantes.

PARTIE A

1. Linéarité de s

Montrer que l'application $s: Q \mapsto s(Q)$ est une application linéaire de E dans lui-même.

- 2. Diagonalisation dans un cas particulier
 - a) On considère la matrice carrée d'ordre 3 : $M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Justifier sans calcul que la matrice M est diagonalisable. Déterminer les valeurs propres de M et, pour chacune d'entre elles, donner une base du sous-espace propre associé.

b) Vérifier que, dans le cas particulier n = 1, M est la matrice de l'application linéaire s dans la base $(1, X, X^2)$. Donner alors une base de vecteurs propres pour s.

3. Etude du cas général

On définit la famille de polynômes $(A_0,, A_{2n})$ par :

$$\text{pour tout r\'eel } x, \qquad \begin{cases} A_k(x) = x^{2n-k} + x^k & \text{si} \quad 0 \leqslant k \leqslant n-1 \\ A_n(x) = x^n \\ A_k(x) = x^k - x^{2n-k} & \text{si} \quad n+1 \leqslant k \leqslant 2n \end{cases}$$

- a) Déterminer l'endomorphisme $s \circ s$.
- b) Soit P un polynôme non nul et λ un réel vérifiant $s(P) = \lambda P$. Calculer $s \circ s(P)$ et en déduire que les valeurs propres de s appartiennent à $\{1, -1\}$.
- c) Déterminer $s(A_k)$ pour tout entier k vérifiant $0 \le k \le 2n$.
- d) Montrer que la famille $(A_0,, A_{2n})$ est libre.
- e) En déduire que l'endomorphisme s est diagonalisable, préciser ses valeurs propres et la dimension de chacun de ses sous-espaces propres.

PARTIE B

1. Préliminaires

On définit une suite $(R_k)_{k\in\mathbb{N}^*}$ de polynômes par : pour tout réel x, $R_1(x)=x$, $R_2(x)=x^2-2$ et pour tout entier k supérieur ou égal à 2, $R_{k+1}(x)=xR_k(x)-R_{k-1}(x)$

- a) Déterminer les polynômes R_3 et R_4 .
- b) Montrer que, pour tout entier k strictement positif, R_k est un polynôme de degré k vérifiant pour tout réel x non nul, l'égalité : $R_k\left(x+\frac{1}{x}\right)=x^k+\frac{1}{x^k}$.
- c) Pour tout réel a, déterminer, s'ils existent, les réels x non nuls qui vérifient la relation suivante : $x+\frac{1}{x}=a$.

2. Étude des racines des polynômes vecteurs propres de s associés à la valeur propre 1

Dans cette question, Q désigne un polynôme de degré 2n défini par : $Q(x) = \sum_{k=0}^{2n} a_k x^k$, tel que a_{2n} soit non nul et tel que, pour tout entier k de l'intervalle [0, n], l'on ait : $a_k = a_{2n-k}$.

On définit alors le polynôme \widetilde{Q} par : $\widetilde{Q}(x) = a_n + \sum_{k=1}^{n} a_{n-k} R_k(x)$.

- a) Vérifier que 0 n'est pas racine de Q.
- b) Soit x un réel non nul, on pose : $y = x + \frac{1}{x}$.

 Montrer que $\frac{Q(x)}{x^n}$ est nul si et seulement si $\widetilde{Q}(y)$ est nul.

Quel est l'intérêt de ce résultat dans la recherche des racines de Q?

c) On suppose que n est égal à 3 et que Q est défini par : $Q(x) = x^6 + x^5 - 9x^4 + 2x^3 - 9x^2 + x + 1.$ Déterminer les racines de Q.

PARTIE C

Dans cette partie, p désigne un entier supérieur ou égal à 2.

On désigne par Ω l'ensemble des éléments de E dont les coefficients sont des entiers de l'intervalle [1, p], par \mathcal{A} l'ensemble des parties de Ω et par \mathbf{P} la probabilité uniforme sur \mathcal{A} , c'est à dire que, pour tout polynôme $Q \text{ de } \Omega$, l'on a : $\mathbf{P}(\{Q\}) = \frac{1}{\operatorname{Card}(\Omega)}$

Si Q est un élément de Ω et i un entier naturel non nul, on dit que Q et s(Q) présentent i coïncidences lorsqu'il existe exactement i entiers k qui vérifient $a_k = a_{2n-k}$.

On définit alors la variable aléatoire Z qui, à tout polynôme Q de Ω , associe le nombre de coïncidences entre

Par exemple pour n = 2, si $Q(x) = x^4 + 7x^3 + 2x^2 + 5x + 1$, on a Z(Q) = 3.

1. Description d'un cas simple

Dans cette question, on suppose que n est égal à 1 et que p est égal à 2. Ecrire tous les éléments de Ω puis déterminer la loi, l'espérance et la variance de Z.

2. Étude générale de la variable aléatoire Z

On revient au cas général : n est strictement positif et p est supérieur ou égal à 2.

- a) Calculer le cardinal de Ω .
- b) Montrer que la plus petite valeur que peut prendre Z est 1 et justifier l'égalité suivante :

$$\mathbf{P}([Z=1]) = \left(\frac{p-1}{p}\right)^n$$

c) Montrer que la plus grande valeur que peut prendre Z est 2n+1 et justifier l'égalité suivante : $\mathbf{P}([Z=2n+1])=\frac{1}{p^n}$

$$\mathbf{P}([Z=2n+1]) = \frac{1}{p^n}$$

- d) Montrer que Z ne peut prendre que des valeurs impaires et, pour un entier j vérifiant $0 \le j \le n$, calculer $\mathbf{P}([Z=2j+1])$.
- e) On pose $Y = \frac{Z-1}{2}$. Montrer que Y suit une loi binomiale dont on précisera les paramètres. En déduire l'espérance et la variance de Z en fonction de n et de p.

1 HEC 2004

ANNALES DE MATHEMATIQUES 2004

HEC 2004 VOIE E

CORRIGE

EXERCICE

Sur [0;1], $x \mapsto \frac{x^{n-1}}{1+x}$ est continue, ce qui prouve au passage que c_n existe.

 $\forall n\in\mathbb{N}^*,\ c_{n+1}-c_n=\int_0^1\frac{x^n-x^{n-1}}{1+x}dx\ \text{par linéarité de l'intégration}\\ =\int_0^1\frac{x^{n-1}(x-1)}{1+x}dx$

Sur [0;1], $x \mapsto \frac{x^{n-1}}{1+x}$ est positive; les bornes sont dans l'ordre croissant, donc $c_n \ge 0$

Sur $[0;1],\ x-1\leq 0$ donc $\frac{x^{n-1}}{1+x}(x-1)\leq 0$. Les bornes sont dans l'ordre croissant, donc $\int_0^1 \frac{x^{n-1}(x-1)}{1+x} dx = c_{n+1} - c_n \le 0$

La suite $(c_n)_{n>1}$ est décroissante

 $\forall n \in \mathbb{N}^*, \ c_{n+1} + c_n = \int_0^1 \frac{x^n + x^{n-1}}{1+x} dx$ par linéarité de l'intégration $= \int_{0}^{1} \frac{x^{n-1}(x+1)}{1+x} dx = \int_{0}^{1} x^{n-1} dx$ $\forall n \ge 1, c_{n+1} + c_n = \frac{1}{n}$

$$\forall n \ge 1, c_{n+1} + c_n = \frac{1}{n}$$

La suite (c_n) étant décroissante, $\forall n \geq 1, \ \frac{1}{n} = c_{n+1} + c_n \leq 2c_n$ puisque $c_{n+1} \leq c_n$

 $\forall n \ge 2, \ \frac{1}{n-1} = c_n + c_{n-1} \ge 2c_n \text{ puisque } c_{n-1} \ge c_n$

Il en résulte que $\forall n \geq 2$, on a $\frac{1}{n} \leq 2c_n \leq \frac{1}{n-1}$

Divisons les trois termes de cet encadrement par $\frac{1}{n} > 0$, il vient

 $1 \le \frac{2c_n}{\underline{1}} \le \frac{n}{n-1}$. Or $\lim_{n \to +\infty} \frac{n}{n-1} = 1$, donc d'après le théorème d'encadrement $\lim_{n\to +\infty}\frac{2c_n}{\frac{1}{n}}=1$, ce qui prouve que $2c_n\underset{+\infty}{\sim}\frac{1}{n}$ ou encore

2

$$c_n \underset{+\infty}{\sim} \frac{1}{2n}$$

$$1-d$$

$$c_1 = \int_0^1 \frac{dx}{1+x} = \left[\ln(1+x)\right]_0^1 = \boxed{\ln 2}$$

Raisonnons par récurrence

• Initialisation : Pour n = 2 $c_2 = 1 - c_1$ (d'après le 1-b) et

$$(-1)^2 \left(\sum_{k=1}^1 \frac{(-1)^{k+1}}{k} - \ln 2\right) = 1 - \ln 2$$
:

La formule est valable pour n = 2.

• Hérédité : supposons la formule vraie pour un entier $n \geq 2$: c'est-à-dire

$$c_{n} = (-1)^{n} \left(\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} - \ln 2 \right) . \text{ D'après le } 1 - \mathbf{b} \right)$$

$$c_{n+1} = \frac{1}{n} - c_{n}$$

$$= \frac{1}{n} - (-1)^{n} \left(\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} - \ln 2 \right)$$

$$= \frac{1}{n} + (-1)^{n+1} \left(\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} - \ln 2 \right)$$

$$= (-1)^{n+1} (-1)^{n+1} \frac{1}{n} + (-1)^{n+1} \left(\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} - \ln 2 \right)$$

$$\operatorname{car} (-1)^{n+1} (-1)^{n+1} = (-1)^{2n+2} = 1$$

$$c_{n+1} = (-1)^{n+1} \left(\frac{(-1)^{n+1}}{n} + \sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} - \ln 2 \right)$$

$$= (-1)^{n+1} \left(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} - \ln 2 \right)$$

La formule obtenue est bien la relation étudiée, au rang n+1: cette relation est héréditaire et d'après le principe du raisonnement par récurrence :

$$\forall n \ge 2, \ c_n = (-1)^n \left(\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} - \ln 2 \right)$$

1-e) _

Program hec2004;

var c : real ; n,k : integer ;

Begin

writeln(' entrez un entier n supérieur ou égal à 1');

write('n=') ; readln(n) ;

 $c := \ln(2)$;

for k = 1 to n-1 do

c := 1/k - c;

writeln(' c(', n, ') = ', c : 1:3);

End.

Posons $t = \frac{1}{u}$; $dt = -\frac{1}{u^2}du$ (la fonction $u \mapsto \frac{1}{u}$ est de classe C^1 sur [0;x])

$$\int_{1}^{x} \frac{dt}{t^{n}(1+t)} = \int_{1}^{\frac{1}{x}} \frac{u^{n}}{1+\frac{1}{u}} (-\frac{1}{u^{2}}) du$$

$$= \int_{\frac{1}{x}}^{1} \frac{u^{n}}{\frac{1+u}{u}} \frac{1}{u^{2}} du$$

$$= \int_{\frac{1}{x}}^{1} \frac{u^{n}}{u(1+u)} du$$

$$\int_{1}^{x} \frac{dt}{t^{n}(1+t)} = \int_{\frac{1}{x}}^{1} \frac{u^{n-1}}{1+u} du$$

Remarquons que , d'après $1-\mathbf{c}$, $c_n>0$ puisque $\frac{1}{2n}\leq c_n$; ceci prouve que $\frac{1}{c_nt^n(1+t)}$ existe . De plus, pour $t\geq 1$, $\frac{1}{c_nt^n(1+t)}>0$, donc

$$\forall t \ge 1, \ f_n(t) \ge 0 \tag{1}$$

L'application $t\mapsto \frac{1}{c_nt^n(1+t)}$ est continue sur $[1;+\infty[$ (fraction rationnelle dont le dénominateur ne s'annule pas) et $t\mapsto 0$ est continue sur $]-\infty;1[$ donc

$$f_n$$
 est continue sur $\mathbb{R} - \{1\}$ (2)

On remarque que f_n est continue en 1 à droite : $\lim_{t\to 1^+} f_n(t) = \frac{1}{2c_n} = f_n(1)$ mais elle n'est pas continue en 1 à gauche car $\lim_{t\to 1^-} f_n(t) = 0 \neq f_n(1)$ puisque $c_n > 0$.

D'autre part ,
$$\forall x \geq 1$$
, $\int_1^x \frac{dt}{t^n(1+t)} = \int_{\frac{1}{x}}^1 \frac{u^{n-1}}{1+u} du$

L'application $g_n: u \mapsto \frac{u^{n-1}}{1+u}$ est continue sur [0;1], donc sur $[\frac{1}{x};1] \subset [0;1]$; elle y admet des primitives. Soit G_n l'une d'entre elles

$$\forall x \ge 1, \ \int_{\frac{1}{x}}^{1} \frac{u^{n-1}}{1+u} du = G_n(1) - G_n(\frac{1}{x}).$$

 $\lim_{x\to +\infty} G_n(\frac{1}{x}) = G_n(0)$ car G_n est continue en 0 et $\frac{1}{x}\to 0$. Donc

$$\lim_{x \to +\infty} \int_{\frac{1}{x}}^{1} \frac{u^{n-1}}{1+u} du = G_n(1) - G_n(0)$$

$$= \int_0^1 \frac{u^{n-1}}{1+u} du = c_n$$

On a
$$\int_{1}^{x} \frac{dt}{t^{n}(1+t)} = \int_{\frac{1}{x}}^{1} \frac{u^{n-1}}{1+u} du$$
, donc

$$\lim_{x \to +\infty} \int_{1}^{x} \frac{dt}{t^{n}(1+t)} = \lim_{x \to +\infty} \int_{\frac{1}{x}}^{1} \frac{u^{n-1}}{1+u} du$$
$$= \int_{1}^{1} \frac{u^{n-1}}{1+u} du = c_{n}$$

Par suite $\int_{-\infty}^{+\infty} f_n(t)dt = \int_{1}^{+\infty} f_n(t)dt$ puisque $f_n(t) = 0$ pour t < 1, donc

page 3 **Jean MALLET et Michel MITERNIQUE** © EDUKLUB SA Tous droits de l'auteur des oeuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des oeuvres autre que la consultation individuelle et privée sont interdites.