

GROUPES, ANNEAUX, CORPS ET ARITHMETIQUE

Problème

Problème

Sur l'équation diophantienne $a^2 - 2b^2 = 1$

Le but du problème est de résoudre l'équation diophantienne $a^2 - 2b^2 = 1$, c'est à dire l'équation aux inconnues *entières a* et b. Pour cela, on va étudier un anneau noté $\mathbb{Z}[\sqrt{2}]$ et plus particulièrement le groupe de ses éléments inversibles qui sera noté dans la suite H.

Pour toute la suite, on note $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}/(a, b) \in \mathbb{Z}^2\}$. On rappelle que $\sqrt{2}$ est un nombre irrationnel.

- 1. Montrer que $(\mathbb{Z}[\sqrt{2}], +, \times)$ avec les lois usuelles est un anneau.
- 2. Démontrer que tout élément $x \in \mathbb{Z}[\sqrt{2}]$ s'écrit de manière unique sous la forme $x = a + b\sqrt{2}$ avec $(a, b) \in \mathbb{Z}^2$.
- 3. Pour tout $x = a + b\sqrt{2}$, on note $\overline{x} = a b\sqrt{2}$ et $N(x) = x\overline{x} = a^2 2b^2$.
 - (a) Vérifier que pour tous $(x, x') \in \mathbb{Z}[\sqrt{2}]^2$ on a $N(x) \in \mathbb{Z}$ et N(xx') = N(x)N(x').
 - (b) Démontrer l'équivalence : $N(x) = 0 \Leftrightarrow x = 0$.
 - (c) Démontrer que x est inversible (pour la multiplication) dans $\mathbb{Z}[\sqrt{2}]$ si et seulement si $N(x) \in \{1, -1\}$.
- 4. Justifier que l'ensemble des éléments inversibles de $\mathbb{Z}[\sqrt{2}]$ pour la multiplication noté (H, \times) est un groupe.
- 5. Pour cette question, on note $x = a + b\sqrt{2}$ un élément de H d'inverse $x' = a' + b'\sqrt{2}$.
 - (a) Démontrer que si a et b sont de même signe on a $|x| \ge 1$ et que sinon on a $|x| \le 1$.
 - (b) On note $H^+ = H \cap]1, +\infty[$. Démontrer que H^+ admet un plus petit élément qui est $\alpha = 1 + \sqrt{2}$.
 - (c) Si $x \in H^+$, on note $E = \{n \in \mathbb{N}/\alpha^n \leq x\} \subset \mathbb{N}$. Démontrer que E admet un plus grand élément p qui vérifie $\alpha^p \leq x < \alpha^{p+1}$.
 - (d) Conclure alors que $H^+ = \{\alpha^n/n \in \mathbb{N}\}$ et déterminer H.
- 6. Résoudre enfin l'équation $a^2-2b^2=1$ où $(a,b)\in\mathbb{Z}^2.$ On pourra utiliser H.

GROUPES, ANNEAUX, CORPS ET ARITHMETIQUE

Indications

Indications

- 1. Vérification facile. On pensera à l'interpréter comme un sous-anneau de \mathbb{R} par exemple.
- 2. Si l'on suppose deux écritures $a+b\sqrt{2}=a'+b'\sqrt{2}$ avec par exemple $b\neq b'$, on peut réexprimer $\sqrt{2}$ qui mène à une contradiction.
- 3. (a) $N(x) \in \mathbb{Z}$ est clair. Pour N(xx') = N(x)N(x'), calculer séparément les deux membres.
 - (b) Si N(x) = 0, on peut en supposant $b \neq 0$ réexprimer $\sqrt{2}$ et obtenir une contradiction.
 - (c) Si x est inversible soit xx' = 1, on peut montrer que $N(x) = \pm 1$ puisque $N(x) \in \mathbb{Z}$. Si $N(x) = \pm 1$, il est possible d'exprimer l'inverse de x (dans \mathbb{R}) et constater qu'il est élément de $\mathbb{Z}[\sqrt{2}]$.
- 4. C'est un résultat de cours.
- 5. (a) Si a et b sont de même signe (disons positifs), déterminer le plus petit élément possible. Si a et b sont de signe contraire, passer par l'inverse de $a + b\sqrt{2}$.
 - (b) Etudier tous les cas possibles des éléments (voir question précédente).
 - (c) Pour qu'une partie de \mathbb{N} admette un plus grand élément p, il faut et il suffit qu'elle soit non vide et majorée. Dans ce cas, p+1 n'est pas dans E.
 - (d) L'inclusion $\{\alpha^n/n\in\mathbb{N}\}\subset H^+$ est facile. Pour la réciproque, raisonner par l'absurde en supposant que $\alpha^p< x<\alpha^{p+1}$ donc que $1< x(\alpha)^p<\alpha$. Pour alors déterminer H, étudier $H\cap]0,1[$ en passant aux inverse puis on trouve facilement les éléments négatifs de H.
- 6. $a^2 2b^2 = 1$ équivaut à $N(a + b\sqrt{2}) = 1$. Utiliser alors l'ensemble H en déterminant ses éléments x tels que N(x) = 1. On sait que $N(\alpha^n) = N(\alpha)^n$.