

HEC ESCP ORAL MATH

ORAL DE MATHEMATIQUES

HEC ESCP

ALGEBRE ENONCE NUMERO 2

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$. On note $E^* = \mathcal{L}(E,\mathbb{R})$ l'espace vectoriel des formes linéaires sur E.

Pour tout polynôme P, on note $P^{(k)}$ la dérivée k ème de P.

Soit $Q \in E$ de degré n. Pour tout $i \in [0, n]$, on pose $Q_i(X) = P(X + i)$.

Le but de l'exercice est de montrer que la famille (Q_0, Q_1, \dots, Q_n) est une base de E.

1) _____

Montrer que la famille $(Q, Q', Q'', \dots, Q^{(n)})$ est une base de E.

2) _____

Pour tout $k \in [0, n]$, on définit l'application f_k par :

$$f_k : E \to \mathbb{R}, P \mapsto P^{(k)}(0)$$

- a) Vérifier que f_k est dans E^* .
- **b)** Pour tout couple $(k, \ell) \in ([0, n])^2$, calculer $f_k(X^{\ell})$.
- c) Montrer que $(f_0, f_1, ..., f_n)$ est une famille libre de E^* .
- 3) _____

Soit $\varphi \in E^*$.

- a) Déterminer la dimension de E^* .
- **b)** Montrer qu'il existe un unique (n+1)-uplet $(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$ tel que

$$\forall P \in E, \ \varphi(P) = \sum_{i=0}^{n} a_i P^{(i)}$$

- c) Soit $\varphi \in E^*$ tel que $\varphi(Q_0) = \varphi(Q_1) = \cdots = \varphi(Q_n) = 0$. Montrer que $\varphi = 0$.
- 4) _____

On suppose que (Q_0, Q_1, \dots, Q_n) n'est pas une base de E.

- a) Montrer qu'il existe un sous-espace vectoriel H de E tel que $\dim(H)=n$ et $\mathrm{vect}(Q_0,Q_1,\ldots,Q_n)\subset H.$
- **b)** Montrer qu'il existe $a \in E$ tel que $E = \text{vect}(a) \bigoplus H$.
- c) On définit une application $\psi_a : E \to \mathbb{R}$ comme suit :

Pour tout $x \in E$ s'écrivant $x = \mu a + h$ avec $\mu \in \mathbb{R}$ et $h \in H$, $\psi_a(x) = \mu$

Montrer que ψ_a est une forme linéaire sur E et déterminer son noyau.

d) Aboutir à une contradiction et conclure.