

HEC ESCP ORAL MATH

ORAL DE MATHEMATIQUES

HEC ESCP

ANALYSE ENONCE NUMERO 5

Soit $n \in \mathbb{N}^*$ et a_1, \ldots, a_n des réels non tous nuls. On considère les fonctions f, g, h définies pour $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ par

$$f(x) = \prod_{i=1}^{n} x_i$$
; $g(x) = \sum_{i=1}^{n} x_i^2$ et $h(x) = \sum_{i=1}^{n} a_i x_i$

1-a)

Justifier que f est de classe C^1 sur \mathbb{R}^n . Déterminer son gradient en tout point x de \mathbb{R}^n .

b) Prouver que f admet un maximum sur la sphère unité S de \mathbb{R}^n définie par

$$S = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n / \sum_{i=1}^n x_i^2 = 1\}$$

- c) Déterminer le maximum de f sur S.
- d) En déduire que pour tout point $u = (u_1, \ldots, u_n)$ de \mathbb{R}^n , on a

$$\Big| \prod_{i=1}^{n} u_i \Big| \le \left(\frac{||u||}{\sqrt{n}} \right)^n$$

où $\|.\|$ désigne la norme euclidienne canonique sur \mathbb{R}^n .

2-a)

Soit $i \in [1, n]$ tel que $a_i \neq 0$. On pose

$$H = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n / h(x) = 1\} \text{ et } B = \{x \in \mathbb{R}^n / ||x|| \le \frac{1}{|a_i|}\}$$

Prouver que l'ensemble $H \cap B$ est non vide puis que c'est un fermé borné de \mathbb{R}^n .

- b) Justifier que la fonction g admet un minimum sur $B \cap H$. Prouver que ce minimum est aussi le minimum de g sous la contrainte h(x) = 1.
- c) Déterminer le minimum de g sur H.