

HEC ESCP ORAL MATH

ORAL DE MATHEMATIQUES

HEC ESCP

ANALYSE ENONCE NUMERO 12

1-a) _____

Montrer que pour tout $x \in [0,1[$, l'intégrale $\int_x^1 \frac{dt}{\sqrt{t-x}}$ converge et calculer alors sa valeur notée I(x).

b) Soit f une fonction continue sur [0,1]. Montrer que l'intégrale $\int_x^1 \frac{f(t)}{\sqrt{t-x}} dt$ converge pour tout $x \in [0,1[$ et déterminer $\lim_{x \to 1^-} \int_x^1 \frac{f(t)}{\sqrt{t-x}} dt$.

On note alors T(f) la fonction définie sur [0,1] par

$$T(f)(x) = \int_{x}^{1} \frac{f(t)}{\sqrt{t-x}} dt$$
, si $0 \le x < 1$ et $T(f)$ continue en 1

2-a) _____

Montrer que pour tout $x \in [0,1]$, on a

$$T(f)(x) = \sqrt{1-x} \int_0^1 \frac{f(x+(1-x)u)}{\sqrt{u}} du.$$

- **b)** On suppose f de classe C^1 sur [0,1]; montrer que la fonction T(f) est continue sur [0,1].
- 3) _____

On suppose dans cette question que $f(1) \neq 0$.

- a) Donner un équivalent de T(f) au voisinage de 1.
- b) Montrer que T(f) n'est pas dérivable en x = 1.

4-a) _____

Déterminer une constante C > 0 telle que pour toute fonction f continue sur [0,1], on a :

$$\sup_{x \in [0,1]} |T(f)(x)| \le C \sup_{x \in [0,1]} |f(x)|$$

b) Déterminer la plus petite constante C vérifiant l'inégalité précédente.